DOI QR코드

DOI QR Code

Function and regulation of nitric oxide signaling in Drosophila

  • Sangyun Jeong (Department of Molecular Biology, Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University)
  • Received : 2023.11.08
  • Accepted : 2023.12.15
  • Published : 2024.01.31

Abstract

Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MIST) (2021R1I1A3059555 and 2018R1A2B6008037).

References

  1. Andreakis, N., D'Aniello, S., Albalat, R., Patti, F.P., Garcia-Fernandez, J., Procaccini, G., Sordino, P., and Palumbo, A. (2011). Evolution of the nitric oxide synthase family in metazoans. Mol. Biol. Evol. 28, 163-179. https://doi.org/10.1093/molbev/msq179
  2. Armstrong, M.J., and Okun, M.S. (2020). Diagnosis and treatment of Parkinson disease: a review. JAMA, 323, 548-560. https://doi.org/10.1001/jama.2019.22360
  3. Aso, Y., Ray, R.P., Long, X., Bushey, D., Cichewicz, K., Ngo, T.T., Sharp, B., Christoforou, C., Hu, A., Lemire, A.L., et al. (2019). Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. Elife, 8, Article e49257.
  4. Bartz, R.R., and Piantadosi, C.A. (2010). Clinical review: oxygen as a signaling molecule. Crit. Care, 14, 234.
  5. Baumann, A., Frings, S., Godde, M., Seifert, R., and Kaupp, U.B. (1994). Primary structure and functional expression of a Drosophila cyclic nucleotide-gated channel present in eyes and antennae. EMBO J. 13, 5040-5050. https://doi.org/10.1002/j.1460-2075.1994.tb06833.x
  6. Bellen, H.J., Tong, C., and Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 11, 514-522. https://doi.org/10.1038/nrn2839
  7. Bicker, G. (2005). STOP and GO with NO: nitric oxide as a regulator of cell motility in simple brains. Bioessays, 27, 495-505. https://doi.org/10.1002/bies.20221
  8. Busto, G.U., Cervantes-Sandoval, I., and Davis, R.L. (2010). Olfactory learning in Drosophila. Physiology, 25, 338-346. https://doi.org/10.1152/physiol.00026.2010
  9. Caceres, L., Necakov, A.S., Schwartz, C., Kimber, S., Roberts, I.J., and Krause, H.M. (2011). Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes Dev. 25, 1476-1485. https://doi.org/10.1101/gad.2064111
  10. Chowdhury, M.A.R., An, J., and Jeong, S. (2023). The pleiotropic face of CREB family transcription factors. Mol. Cells, 46, 399-413. https://doi.org/10.14348/molcells.2023.2193
  11. Davies, S. (2000). Nitric oxide signalling in insects. Insect Biochem. Mol. Biol. 30, 1123-1138. https://doi.org/10.1016/S0965-1748(00)00118-1
  12. Davies, S.A., Cabrero, P., Povsic, M., Johnston, N.R., Terhzaz, S., and Dow, J.A. (2013). Signaling by Drosophila capa neuropeptides. Gen. Comp. Endocrinol. 188, 60-66. https://doi.org/10.1016/j.ygcen.2013.03.012
  13. DiGregorio, P.J., Ubersax, J.A., and O'Farrell, P.H. (2001). Hypoxia and nitric oxide induce a rapid, reversible cell cycle arrest of the Drosophila syncytial divisions. J. Biol. Chem. 276, 1930-1937. https://doi.org/10.1074/jbc.M003911200
  14. Dijkers, P.F., and O'Farrell, P.H. (2007). Drosophila calcineurin promotes induction of innate immune responses. Curr. Biol. 17, 2087-2093. https://doi.org/10.1016/j.cub.2007.11.001
  15. Dijkers, P.F., and O'Farrell, P.H. (2009). Dissection of a hypoxia-induced, nitric oxide-mediated signaling cascade. Mol. Biol. Cell, 20, 4083-4090. https://doi.org/10.1091/mbc.e09-05-0362
  16. Dow, J.A., Maddrell, S.H., Davies, S.A., Skaer, N.J., and Kaiser, K. (1994). A novel role for the nitric oxide-cGMP signaling pathway: the control of epithelial function in Drosophila. Am. J. Physiol. 266, R1716-R1719. https://doi.org/10.1152/ajpregu.1994.266.5.R1716
  17. Duan, J., Li, W., Yuan, D., Sah, B., Yan, Y., and Gu, H. (2012). Nitric oxide signaling modulates cholinergic synaptic input to projection neurons in Drosophila antennal lobes. Neuroscience, 219, 1-9. https://doi.org/10.1016/j.neuroscience.2012.05.068
  18. Dyson, N. (1998). The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245-2262. https://doi.org/10.1101/gad.12.15.2245
  19. Farah, C., Michel, L.Y.M., and Balligand, J.L. (2018). Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 15, 292-316. https://doi.org/10.1038/nrcardio.2017.224
  20. Feil, R., and Kleppisch, T. (2008). NO/cGMP-dependent modulation of synaptic transmission. Handb. Exp. Pharmacol. 184, 529-560. https://doi.org/10.1007/978-3-540-74805-2_16
  21. Foley, E., and O'Farrell, P.H. (2003). Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev. 17, 115-125. https://doi.org/10.1101/gad.1018503
  22. Garthwaite, J. (2016). From synaptically localized to volume transmission by nitric oxide. J. Physiol. 594, 9-18. https://doi.org/10.1113/JP270297
  23. Giachello, C.N.G., Fan, Y.N., Landgraf, M., and Baines, R.A. (2021). Nitric oxide mediates activity-dependent change to synaptic excitation during a critical period in Drosophila. Sci. Rep. 11, Article 20286.
  24. Gibbs, S.M., Becker, A., Hardy, R.W., and Truman, J.W. (2001). Soluble guanylate cyclase is required during development for visual system function in Drosophila. J. Neurosci. 21, 7705-7714. https://doi.org/10.1523/JNEUROSCI.21-19-07705.2001
  25. Gibbs, S.M., and Truman, J.W. (1998). Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron, 20, 83-93. https://doi.org/10.1016/S0896-6273(00)80436-5
  26. Gonzalez-Domenech, C.M., and Munoz-Chapuli, R. (2010). Molecular evolution of nitric oxide synthases in metazoans. Comp. Biochem. Physiol. Part D Genom. Proteom. 5, 295-301.
  27. Griffith, O.W., and Stuehr, D.J. (1995). Nitric oxide synthases: properties and catalytic mechanism. Annu. Rev. Physiol. 57, 707-736. https://doi.org/10.1146/annurev.ph.57.030195.003423
  28. Hafen, E., and Stocker, H. (2003). How are the sizes of cells, organs, and bodies controlled? PLoS Biol. 1, Article E86.
  29. Hurshman, A.R., and Marletta, M.A. (2002). Reactions catalyzed by the heme domain of inducible nitric oxide synthase: evidence for the involvement of tetrahydrobiopterin in electron transfer. Biochemistry, 41, 3439-3456. https://doi.org/10.1021/bi012002h
  30. Imai, Y., Gehrke, S., Wang, H.Q., Takahashi, R., Hasegawa, K., Oota, E., and Lu, B. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432-2443. https://doi.org/10.1038/emboj.2008.163
  31. Jeandroz, S., Wipf, D., Stuehr, D.J., Lamattina, L., Melkonian, M., Tian, Z., Zhu, Y., Carpenter, E.J., Wong, G.K., and Wendehenne, D. (2016). Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci. Signal. 9, re2.
  32. Jeibmann, A., and Paulus, W. (2009). Drosophila melanogaster as a model organism of brain diseases. Int. J. Mol. Sci. 10, 407-440. https://doi.org/10.3390/ijms10020407
  33. Johnston, D.M., Sedkov, Y., Petruk, S., Riley, K.M., Fujioka, M., Jaynes, J.B., and Mazo, A. (2011). Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. Mol. Cell, 44, 51-61. https://doi.org/10.1016/j.molcel.2011.07.033
  34. Kanao, T., Venderova, K., Park, D.S., Unterman, T., Lu, B., and Imai, Y. (2010). Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Hum. Mol. Genet. 19, 3747-3758. https://doi.org/10.1093/hmg/ddq289
  35. Kanao, T., Sawada, T., Davies, S.A., Ichinose, H., Hasegawa, K., Takahashi, R., Hattori, N., and Imai, Y. (2012). The nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in Drosophila. PLoS One, 7, Article e30958.
  36. Kim, S.E., Coste, B., Chadha, A., Cook, B., and Patapoutian, A. (2012). The role of Drosophila Piezo in mechanical nociception. Nature, 483, 209-212. https://doi.org/10.1038/nature10801
  37. Kim, W.K., Choi, W., Deshar, B., Kang, S., and Kim, J. (2023). Golgi stress response: New insights into the pathogenesis and therapeutic targets of human diseases. Mol. Cells, 46, 191-199. https://doi.org/10.14348/molcells.2023.2152
  38. Kozlov, A., Koch, R., and Nagoshi, E. (2020). Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. PLoS Genet, 16, Article e1008312.
  39. Kuntz, S., Poeck, B., and Strauss, R. (2017). Visual working memory requires permissive and instructive NO/cGMP signaling at presynapses in the Drosophila central brain. Curr. Biol. 27, 613-623. https://doi.org/10.1016/j.cub.2016.12.056
  40. Kuzin, B., Regulski, M., Stasiv, Y., Scheinker, V., Tully, T., and Enikolopov, G. (2000). Nitric oxide interacts with the retinoblastoma pathway to control eye development in Drosophila. Curr. Biol. 10, 459-462. https://doi.org/10.1016/S0960-9822(00)00443-7
  41. Kuzin, B., Roberts, I., Peunova, N., and Enikolopov, G. (1996). Nitric oxide regulates cell proliferation during Drosophila development. Cell, 87, 639-649. https://doi.org/10.1016/S0092-8674(00)81384-7
  42. Lee, J.A., Kwon, Y.W., Kim, H.R., Shin, N., Son, H.J., Cheong, C.S., Kim, D.J., and Hwang, O. (2022a). A novel pyrazolo[3,4-d]pyrimidine Induces heme oxygenase-1 and exerts anti-inflammatory and neuroprotective effects. Mol. Cells, 45, 134-147. https://doi.org/10.14348/molcells.2021.0074
  43. Lee, P., Chandel, N.S., and Simon, M.C. (2020). Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268-283. https://doi.org/10.1038/s41580-020-0227-y
  44. Lee, Y., Kim, J., Kim, H., Han, J.E., Kim, S., Kang, K.H., Kim, D., Kim, J.M., and Koh, H. (2022b). Pyruvate dehydrogenase kinase protects dopaminergic neurons from oxidative stress in Drosophila DJ-1 null mutants. Mol. Cells, 45, 454-464. https://doi.org/10.14348/molcells.2022.5002
  45. Luck, S.J., and Vogel, E.K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391-400. https://doi.org/10.1016/j.tics.2013.06.006
  46. Lundberg, J.O., and Weitzberg, E. (2022). Nitric oxide signaling in health and disease. Cell, 185, 2853-2878. https://doi.org/10.1016/j.cell.2022.06.010
  47. Luo, L., and O'Leary, D.D. (2005). Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127-156. https://doi.org/10.1146/annurev.neuro.28.061604.135632
  48. Marletta, M.A., Hurshman, A.R., and Rusche, K.M. (1998). Catalysis by nitric oxide synthase. Curr. Opin. Chem. Biol. 2, 656-663. https://doi.org/10.1016/S1367-5931(98)80098-7
  49. Marsh, J.L., and Thompson, L.M. (2006). Drosophila in the study of neurodegenerative disease. Neuron, 52, 169-178. https://doi.org/10.1016/j.neuron.2006.09.025
  50. Martinez-Ruiz, A., Cadenas, S., and Lamas, S. (2011). Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic. Biol. Med. 51, 17-29. https://doi.org/10.1016/j.freeradbiomed.2011.04.010
  51. Messing, A., Brenner, M., Feany, M.B., Nedergaard, M., and Goldman, J.E. (2012). Alexander disease. J. Neurosci. 32, 5017-5023. https://doi.org/10.1523/JNEUROSCI.5384-11.2012
  52. Meulemans, A. (1994). Diffusion coefficients and half-lives of nitric oxide and N-nitroso-L-arginine in rat cortex. Neurosci. Lett. 171, 89-93. https://doi.org/10.1016/0304-3940(94)90612-2
  53. Miyazu, M., Tanimura, T., and Sokabe, M. (2000). Molecular cloning and characterization of a putative cyclic nucleotide-gated channel from Drosophila melanogaster. Insect Mol. Biol. 9, 283-292. https://doi.org/10.1046/j.1365-2583.2000.00186.x
  54. Muller, U., and Buchner, E. (1993). Histochemical localization of NADPH-diaphorase in the adult Drosophila brain. Is nitric oxide a neuronal messenger also in insects? Naturwissenschaften, 80, 524-526.
  55. Myllymaki, H., Valanne, S., and Ramet, M. (2014). The Drosophila imd signaling pathway. J. Immunol. 192, 3455-3462. https://doi.org/10.4049/jimmunol.1303309
  56. Nappi, A.J., Vass, E., Frey, F., and Carton, Y. (2000). Nitric oxide involvement in Drosophila immunity. Nitric Oxide, 4, 423-430. https://doi.org/10.1006/niox.2000.0294
  57. Paisan-Ruiz, C., Jain, S., Evans, E.W., Gilks, W.P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A.M., Khan, N., et al. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron, 44, 595-600. https://doi.org/10.1016/j.neuron.2004.10.023
  58. Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., and Lang, A.E. (2017). Parkinson disease. Nat. Rev. Dis. Primers, 3, Article 17013.
  59. Pollock, V.P., McGettigan, J., Cabrero, P., Maudlin, I.M., Dow, J.A., and Davies, S.A. (2004). Conservation of capa peptide-induced nitric oxide signalling in Diptera. J. Exp. Biol. 207, 4135-4145. https://doi.org/10.1242/jeb.01255
  60. Rabinovich, D., Yaniv, S.P., Alyagor, I., and Schuldiner, O. (2016). Nitric oxide as a switching mechanism between axon degeneration and regrowth during developmental remodeling. Cell, 164, 170-182. https://doi.org/10.1016/j.cell.2015.11.047
  61. Ray, S.S., Sengupta, R., Tiso, M., Haque, M.M., Sahoo, R., Konas, D.W., Aulak, K., Regulski, M., Tully, T., Stuehr, D.J., et al. (2007b). Reductase domain of Drosophila melanogaster nitric-oxide synthase: redox transformations, regulation, and similarity to mammalian homologues. Biochemistry, 46, 11865-11873. https://doi.org/10.1021/bi700805x
  62. Ray, S.S., Tejero, J., Wang, Z.Q., Dutta, T., Bhattacharjee, A., Regulski, M., Tully, T., Ghosh, S., and Stuehr, D.J. (2007a). Oxygenase domain of Drosophila melanogaster nitric oxide synthase: unique kinetic parameters enable a more efficient NO release. Biochemistry, 46, 11857-11864. https://doi.org/10.1021/bi700803p
  63. Reinking, Lam, J., Pardee, M.M., Sampson, K., Liu, H.M., Yang, S., Williams, P., White, S., Lajoie, W., Edwards, G., et al. (2005). The Drosophila nuclear receptor e75 contains heme and is gas responsive. Cell, 122, 195-207. https://doi.org/10.1016/j.cell.2005.07.005
  64. Robinson, S.W., Bourgognon, J.M., Spiers, J.G., Breda, C., Campesan, S., Butcher, A., Mallucci, G.R., Dinsdale, D., Morone, N., Mistry, R., et al. (2018). Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability. PLoS Biol. 16, Article e2003611.
  65. Rubin, G.M., and Lewis, E.B. (2000). A brief history of Drosophila's contributions to genome research. Science, 287, 2216-2218. https://doi.org/10.1126/science.287.5461.2216
  66. Sawaishi, Y. (2009). Review of Alexander disease: beyond the classical concept of leukodystrophy. Brain Dev. 31, 493-498. https://doi.org/10.1016/j.braindev.2009.03.006
  67. Sengupta, R., Sahoo, R., Mukherjee, S., Regulski, M., Tully, T., Stuehr, D.J., and Ghosh, S. (2003). Characterization of Drosophila nitric oxide synthase: a biochemical study. Biochem. Biophys. Res. Commun. 306, 590-597.
  68. Seo, J.Y., Kim, T.H., Kang, K.R., Lim, H., Choi, M.C., Kim, D.K., Chun, H.S., Kim, H.J., Yu, S.K., and Kim, J.S. (2023). 7α,25-Dihydroxycholesterol-induced oxiapoptophagic chondrocyte death via the modulation of p53-Akt-mTOR axis in osteoarthritis pathogenesis. Mol. Cells, 46, 245-255. https://doi.org/10.14348/molcells.2023.2149
  69. Shakiryanova, D., and Levitan, E.S. (2008). Prolonged presynaptic posttetanic cyclic GMP signaling in Drosophila motoneurons. Proc. Natl. Acad. Sci. U.S.A. 105, 13610-13613. https://doi.org/10.1073/pnas.0802131105
  70. Song, Y., Li, D., Farrelly, O., Miles, L., Li, F., Kim, S.E., Lo, T.Y., Wang, F., Li, T., Thompson-Peer, K.L., et al. (2019). The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron, 102, 373-389. https://doi.org/10.1016/j.neuron.2019.01.050
  71. Song, Y., Ori-McKenney, K.M., Zheng, Y., Han, C., Jan, L.Y., and Jan, Y.N. (2012). Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam. Genes Dev. 26, 1612-1625. https://doi.org/10.1101/gad.193243.112
  72. Stamler, J.S., Lamas, S., and Fang, F.C. (2001). Nitrosylation: the prototypic redox-based signaling mechanism. Cell, 106, 675-683. https://doi.org/10.1016/S0092-8674(01)00495-0
  73. Stasiv, Y., Kuzin, B., Regulski, M., Tully, T., and Enikolopov, G. (2004). Regulation of multimers via truncated isoforms: a novel mechanism to control nitric-oxide signaling. Genes Dev. 18, 1812-1823. https://doi.org/10.1101/gad.298004
  74. Steinert, J.R., Chernova, T., and Forsythe, I.D. (2010). Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist, 16, 435-452. https://doi.org/10.1177/1073858410366481
  75. Stuehr, D.J., and Haque, M.M. (2019). Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br. J. Pharmacol. 176, 177-188. https://doi.org/10.1111/bph.14533
  76. Suzuki, T., Takahashi, J., and Yamamoto, M. (2023). Molecular basis of the KEAP1-NRF2 signaling pathway. Mol. Cells, 46, 133-141. https://doi.org/10.14348/molcells.2023.0028
  77. Tegeder, I., Scheving, R., Wittig, I., and Geisslinger, G. (2011). SNO-ing at the nociceptive synapse? Pharmacol. Rev. 63, 366-389.
  78. Thomas, D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzelli, S., Hussain, P., Vecoli, C., Paolocci, N., Ambs, S., et al. (2008). The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med. 45, 18-31. https://doi.org/10.1016/j.freeradbiomed.2008.03.020
  79. Villegas, S.N., Gombos, R., Garcia-Lopez, L., Gutierrez-Perez, I., Garcia-Castillo, J., Vallejo, D.M., Da Ros, V.G., Ballesta-Illan, E., Mihaly, J., and Dominguez, M. (2018). PI3K/Akt cooperates with oncogenic Notch by inducing nitric oxide-dependent inflammation. Cell Rep. 22, 2541-2549. https://doi.org/10.1016/j.celrep.2018.02.049
  80. Wang, L., Hagemann, T.L., Kalwa, H., Michel, T., Messing, A., and Feany, M.B. (2015). Nitric oxide mediates glial-induced neurodegeneration in Alexander disease. Nat. Commun. 6, Article 8966.
  81. Watts, R.J., Schuldiner, O., Perrino, J., Larsen, C., and Luo, L. (2004). Glia engulf degenerating axons during developmental axon pruning. Curr. Biol. 14, 678-684.
  82. Wildemann, B., and Bicker, G. (1999a). Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction. J. Neurobiol. 39, 337-346. https://doi.org/10.1002/(SICI)1097-4695(19990605)39:3<337::AID-NEU1>3.0.CO;2-9
  83. Wildemann, B., and Bicker, G. (1999b). Developmental expression of nitric oxide/cyclic GMP synthesizing cells in the nervous system of Drosophila melanogaster. J. Neurobiol. 38, 1-15. https://doi.org/10.1002/(SICI)1097-4695(199901)38:1<1::AID-NEU1>3.0.CO;2-L
  84. Wingrove, J.A., and O'Farrell, P.H. (1999). Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell, 98, 105-114. https://doi.org/10.1016/S0092-8674(00)80610-8
  85. Wu, S.C., Liao, C.W., Pan, R.L., and Juang, J.L. (2012). Infection-induced intestinal oxidative stress triggers organ-to-organ immunological communication in Drosophila. Cell Host Microbe, 11, 410-417. https://doi.org/10.1016/j.chom.2012.03.004
  86. Yakubovich, N., Silva, E.A., and O'Farrell, P.H. (2010). Nitric oxide synthase is not essential for Drosophila development. Curr. Biol. 20, R141-R142. https://doi.org/10.1016/j.cub.2009.12.011
  87. Yaniv, S.P., Issman-Zecharya, N., Oren-Suissa, M., Podbilewicz, B., and Schuldiner, O. (2012). Axon regrowth during development and regeneration following injury share molecular mechanisms. Curr. Biol. 22, 1774-1782. https://doi.org/10.1016/j.cub.2012.07.044
  88. Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R.J., Calne, D.B., et al. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601-607. https://doi.org/10.1016/j.neuron.2004.11.005