• 제목/요약/키워드: cellular differentiation

검색결과 793건 처리시간 0.02초

혈소판농축혈장이 조골세포주의 세포증식 및 분화에 미치는 영향에 대한 연구 (A Study of the Effect of Platelet-Rich Plasma on the Cellular Proliferation and Differentiation of Osteoblast Cell Line)

  • 정태욱;장경수;김창회;김영수
    • 구강회복응용과학지
    • /
    • 제20권1호
    • /
    • pp.31-41
    • /
    • 2004
  • The osseointegration in implant therapy is achieved following general wound healing mechanism. Platelet play a major role in wound healing process. In addition to blood clot formation, they secrete many growth factors which regulate the attachment, proliferation and differentiation of nearly all cell types. The use of these growth factors is now known to be very effective methods to improve the cellular activity. Platelet-rich plasma which is made with the newly developed technique concentrating platelets 3-folds or more is also proven to be very effective method to stimulate and accelerate the healing of bone and soft tissue. Previous study proved that platelet-rich plasma enhanced the cellular attachment by inducing fibronectin, vitronectin from osteoblast. So, this study was aimed to investigate the effect of platelet-rich plasma on the cellular proliferation and differentiation in vitro. The effect on the proliferation was evaluated by MTT assay. To evaluate autocrine and paracrine effect, conditioned medium was made and compared. By measuring alkaline phosphatase activity, the effect on the cellular differentiation was evaluated. The results were as following: The cellular proliferation of osteoblast cell line increased depending on the concentration of platelet-rich plasma and conditioned medium. The alkaline phosphatase activity increased depending on the concentration of platelet-rich plasma and conditioned medium. These findings imply that platelet-rich plasma enhance the cellular proliferation and differentiation and maximize the cellular activity by using the autocrine and paracrine effect.

Effects of nanoscale ridge/groovepattern arrayed surface on in vitro differentiation of multi-potent pulp cells derived from human supernumerary teeth

  • Kim, Daehwan;Jo, Hwansung;Lee, Jingu;Kim, Keesung;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • 제38권4호
    • /
    • pp.161-167
    • /
    • 2013
  • Human dental pulp stem cells (DPSCs) are multi-potent mesenchymal stem cells that have several differentiation potentials. An understanding of thetissues that differentiate from these cells can provide insights for future regenerative therapeutics and tissue engineering strategies. The mesiodens is the most frequent form of supernumerary tooth from which DPSCs can differentiate into several lineages similar to cells from normal deciduous teeth. Recently, it has been shown that nanoscale structures can affect stem cell differentiation. In our presentstudy, we investigated the effects of a 250-nm nanoscale ridge/groove pattern array on the osteogenic and adipogenic differentiation of dental pulp cells from mesiodenscontaining human DPSCs. To this end, the expression of lineage specific markers after differentiation induction was analyzed by lineage specific staining and RT-PCR. The nanoscale pattern arrayed surface showed apositive effect on the adipogenic differentiation of DPSCs. There was no difference between nanoscale pattern arrayed surface and conventional surface groups onosteogenic differentiation. In conclusion, the nanoscale ridge/groove pattern arrayed surface can be used to enhance the adipogenic differentiation of DPSCs derived from mesiodens. This finding provides an improved understanding of the effects of topography on cell differentiation as well as the potential use of supernumerary tooth in regenerative dental medicine.

Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교 (Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC)

  • 박순정;전영주;김주미;선정민;채정일;정형민
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.

Cultural conditions affect somatic embryogenesis in Catharanthus roseus L. (G.) Don

  • Aslam, Junaid;Mujib, A.;Fatima, Samar;Sharma, M.P.
    • Plant Biotechnology Reports
    • /
    • 제2권3호
    • /
    • pp.179-189
    • /
    • 2008
  • We established an efficient plant regeneration system for Catharanthus roseus L. (G.) Don through somatic embryogenesis. Embryogenic callus was induced from hypocotyl of seed germinated in vitro. Somatic embryogenesis in Catharanthus has been categorized into three distinct stages: (1) initiation and proliferation of embryo; (2) maturation, and; (3) germination or plantlet conversion. Beside plant growth regulators, various stages of embryogenesis were screened for their response to a wide variety of factors (pH, gelrite, light, sugar alcohols, polyethyleneglycol and amino acids), which affect embryogenesis. All of the tested factors had a small to marked influence on embryogeny and eventual conversion to plantlets. The plantlets were acclimatized successfully in a greenhouse. To our knowledge, this is the first report describing a detailed study of various cultural factors which regulate embryogenesis in C. roseus. The results discussed in this paper may be used in mass propagation to produce medicinal raw material, and the embryo precursor cells could be used in genetic modification programmes that aim to improve the alkaloid yield as well.

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • 제51권5호
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Effects of Wax Gourd Extracts on Adipocyte Differentiation and Uncoupling Protein Genes(Ucps) Expression in 3T3-Ll Preadipocytes

  • Kang, Keun-Jee;Kwon, So-Young
    • Nutritional Sciences
    • /
    • 제6권3호
    • /
    • pp.148-154
    • /
    • 2003
  • Although various raw plant materials have been demonstrated to exert anti-obesity effects to a greater or lesser extent in both humans and animals when they are used to supplement the diet, it has not been shown extensively that they influence adipocyte cell differentiation involving lipid metabolic gene expressions. Using a well-established 3T3-L1 preadipocyte differentiation system, we decided to look into molecular and cellular event occurring during adipocyte differentiation when raw plant materials aye included in the process, in an effort to demonstrate the potential use of a screening system to define the functions of traditionally well-known materials. To these ends, the effects of ethanol (EtOH) or EtOH/distilled water (DW) extracts of Wax Gourd were examined using cytochemical and molecular analyses to determine whether components of the extracts modulate adipocyte differentiation of 3T3-Ll preadipocytes in vitro. The cytochemical results demonstrated that EtOH or EtOH/DW extracts did not affect lipid accumulation and cell proliferation, although the degree of lipid accumulation was influenced slightly depending on the extract. EtOH extract was highly effective in apoptotic induction during differentiation of 3T3-Ll preadipocytes (p<0.05). Reverse transcription-polymerase chain reaction (RT-PCR) analysis of lipoprotein lipase (LPL), Uncoupling protein (Ucp) 2, 3 and 4 also showed that while LPL expression was not influenced, Ucp2, 3 and 4 were up regulated in the EtOH extract-treated group and down regulated in the EtOH/DW extract-treated group. These changes in gene expressions suggest that the components in different fractions of Wax Gourd extracts may modulate lipid metabolism by either direct or indirect action. Taking these results together, it was concluded that molecular and cellular analyses of adipocyte differentiation involving lipid metabolic genes should facilitate understanding of cellular events occurring during adipocyte differentiation. Furthermore, the experimental scheme and analytical methods used in this study should provide a screening system for the functional study of raw plant materials in obesity research.

The effects of dexamethasone on the apoptosis and osteogenic differentiation of human periodontal ligament cells

  • Kim, Sung-Mi;Kim, Yong-Gun;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.168-176
    • /
    • 2013
  • Purpose: The purpose of the current study was to examine the effect of dexamethasone (Dex) at various concentrations on the apoptosis and mineralization of human periodontal ligament (hPDL) cells. Methods: hPDL cells were obtained from the mid-third of premolars extracted for orthodontic reasons, and a primary culture of hPDL cells was prepared using an explant technique. Groups of cells were divided according to the concentration of Dex (0, 1, 10, 100, and 1,000 nM). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for evaluation of cellular viability, and alkaline phosphatase activity was examined for osteogenic differentiation of hPDL cells. Alizarin Red S staining was performed for observation of mineralization, and real-time polymerase chain reaction was performed for the evaluation of related genes. Results: Increasing the Dex concentration was found to reduce cellular viability, with an increase in alkaline phosphatase activity and mineralization. Within the range of Dex concentrations tested in this study, 100 nM of Dex was found to promote the most vigorous differentiation and mineralization of hPDL cells. Dex-induced osteogenic differentiation and mineralization was accompanied by an increase in the level of osteogenic and apoptosis-related genes and a reduction in the level of antiapoptotic genes. The decrease in hPDL cellular viability by glucocorticoid may be explained in part by the increased prevalence of cell apoptosis, as demonstrated by BAX expression and decreased expression of the antiapoptotic gene, Bcl-2. Conclusions: An increase in hPDL cell differentiation rather than cellular viability at an early stage is likely to be a key factor in glucocorticoid induced mineralization. In addition, apoptosis might play an important role in Dex-induced tissue regeneration; however, further study is needed for investigation of the precise mechanism.

Nuclear structures and their emerging roles in cell differentiation and development

  • Hye Ji Cha
    • BMB Reports
    • /
    • 제57권9호
    • /
    • pp.381-387
    • /
    • 2024
  • The nucleus, a highly organized and dynamic organelle, plays a crucial role in regulating cellular processes. During cell differentiation, profound changes occur in gene expression, chromatin organization, and nuclear morphology. This review explores the intricate relationship between nuclear architecture and cellular function, focusing on the roles of the nuclear lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, and the nuclear scaffold. These components collectively maintain nuclear integrity, organize chromatin, and interact with key regulatory factors. The dynamic remodeling of chromatin, its interactions with nuclear structures, and epigenetic modifications work in concert to modulate gene accessibility and ensure precise spatiotemporal control of gene expression. The nuclear lamina stabilizes nuclear shape and is associated with inactive chromatin regions, while NPCs facilitate selective transport. Sub-nuclear bodies contribute to genome organization and gene regulation, often by influencing RNA processing. The nuclear scaffold provides structural support, impacting 3D genome organization, which is crucial for proper gene expression during differentiation. This review underscores the significance of nuclear architecture in regulating gene expression and guiding cell differentiation. Further investigation into nuclear structure and 3D genome organization will deepen our understanding of the mechanisms governing cell fate determination.

Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells

  • Moon, Jung-Il;Han, Min-Joon;Yu, Shin-Hye;Lee, Eun-Hye;Kim, Sang-Mi;Han, Kyuboem;Park, Chang-Hwan;Kim, Chun-Hyung
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.324-329
    • /
    • 2019
  • Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols.

SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation

  • Jin, Eom;Juhyun, Choi;Sung-Suk, Suh;Jong Bae, Seo
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.963-975
    • /
    • 2022
  • Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.