DOI QR코드

DOI QR Code

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park (Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Joo-Yeon Lim (Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute) ;
  • Je-Hoon Kim (Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Jieun Lee (Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Songju Shin (Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Hee-Moon Park (Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University)
  • Received : 2023.07.23
  • Accepted : 2023.09.11
  • Published : 2023.10.31

Abstract

Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Keywords

Acknowledgement

This work was funded by the grants from the National Research Foundation of Korea, grant number 2015025545 and 2021R1A2C1009229 (to HMP)

References

  1. Yun B, Farkas R, Lee K, et al. The doa locus encodes a member of a new protein kinase family and is essential for eye and embryonic development in Drosophila melanogaster. Genes Dev. 1994;8(10):1160-1173. doi:10.1101/GAD.8.10.1160.
  2. Lim JY, Park HM. The dual-specificity LAMMER kinase affects stress-response and morphological plasticity in fungi. Front Cell Infect Microbiol. 2019;9:213. doi:10.3389/fcimb.2019.00213.
  3. Park Y-D, Kwon SJ, Bae KS, et al. LAMMER kinase Lkh1 is an upstream regulator of Prk1-mediated non-sexual flocculation in fission yeast. Mycobiology. 2018;46(3):236-241. doi:10.1080/12298093.2018.1513115.
  4. Kang W-H, Park Y-D, Hwang J-S, et al. RNA-binding protein Csx1 is phosphorylated by LAMMER kinase, Lkh1, in response to oxidative stress in Schizosaccharomyces pombe. FEBS Lett. 2007;581(18):3473-3478. doi:10.1016/j.febslet.2007.06.053.
  5. Kang W-H, Park Y-H, Park H-M. The LAMMER kinase homolog, Lkh1, regulates tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J Biol Chem. 2010;285(18):13797-13806. doi:10.1074/jbc.M110.113555.
  6. Yu EY, Lee JH, Kang WH, et al. Fission yeast LAMMER kinase Lkh1 regulates the cell cycle by phosphorylating the CDK-inhibitor Rum1. Biochem Biophys Res Commun. 2013;432(1):80-85. doi:10.1016/j.bbrc.2013.01.082.
  7. Sanchez-Casalongue ME, Lee J, Diamond A, et al. Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the cdc-like kinase Kns1. J Biol Chem. 2015;290(11):7221-7233. doi:10.1074/jbc.M114.626523.
  8. Park YH, Yang JM, Yang SY, et al. Function of dual specificity kinase, ScKns1, in adhesive and filamentous growth of Saccharomyces cerevisiae. Korean J Microbiol. 2011;47:110-116.
  9. Park Y-H, Park H-M. Temperature sensitivity of sigma background is suppressed by the disruption of ScKNS1 in Saccharomyces cerevisiae. Korean J Microbiol. 2011;47:167-169.
  10. Lim J-Y, Park Y-H, Pyon Y-H, et al. The LAMMER kinase is involved in morphogenesis and response to cell wall- and DNA-damaging stresses in Candida albicans. Med Mycol. 2020;58(2):240-247. doi:10.1093/mmy/myz049.
  11. Choi YK, Kang EH, Park HM. Role of LAMMER kinase in cell wall biogenesis during vegetative growth of Aspergillus nidulans. Mycobiology. 2014;42(4):422-426. doi:10.5941/MYCO.2014.42.4.422.
  12. Lim J-Y, Kim YJ, Woo SA, et al. The LAMMER kinase, LkhA, affects Aspergillus fumigatus pathogenicity by modulating reproduction and biosynthesis of cell wall PAMPs. Front Cell Infect Microbiol. 2021;11:756206. doi:10.3389/FCIMB.2021.756206.
  13. Kang E-H, Kim J, Oh H-W, et al. LAMMER kinase LkhA plays multiple roles in the vegetative growth and asexual and sexual development of Aspergillus nidulans. PLoS One. 2013;8(3):e58762. doi:10.1371/journal.pone.0058762.
  14. Li L, Zhu XM, Wu JQ, et al. The LAMMER kinase MoKns1 regulates growth, conidiation and pathogenicity in Magnaporthe oryzae. Int J Mol Sci. 2022;23(15):8104. doi:10.3390/ijms23158104.
  15. de Sena-Tomas C, Sutherland JH, Milisavljevic M, et al. LAMMER kinase contributes to genome stability in Ustilago maydis. DNA Repair. 2015;33:70-77. doi:10.1016/j.dnarep.2015.05.011.
  16. Hanes J, von der Kammer H, Klaudiny J, et al. Characterization by cDNA cloning of two new human protein kinases: evidence by sequence comparison of a new family of mammalian protein kinases. J Mol Biol. 1994;244(5):665-672. doi:10.1006/jmbi.1994.1763.
  17. Talmadge CB, Finkernagel S, Sumegi J, et al. Chromosomal mapping of three human LAMMER protein-kinase-encoding genes. Hum Genet. 1998;103(4):523-524. doi:10.1007/s004390050861.
  18. Kim K-H, Cho Y-M, Kang W-H, et al. Negative regulation of filamentous growth and flocculation by Lkh1, a fission yeast LAMMER kinase homolog. Biochem Biophys Res Commun. 2001;289(5):1237-1242. doi:10.1006/bbrc.2001.6128.
  19. Lee G, Kim JH, Kwon SJ, et al. LAMMER kinase modulates the DNA replicative stress response in fission yeast. Korean J Microbiol. 2022;58:222-229. doi:10.7845/kjm.2022.2091.
  20. Fantes PA. Control of cell size and cycle time in Schizosaccharomyces pombe. J Cell Sci. 1977;24(1):51-67. doi:10.1242/JCS.24.1.51.
  21. Daga RR, Bolanos ~ P, Moreno S. Regulated mRNA stability of the cdk inhibitor Rum1 links nutrient status to cell cycle progression. Curr Biol. 2003;13(23):2015-2024. doi:10.1016/j.cub.2003.10.061.
  22. Bertoli C, Skotheim JM, De Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518-528. doi:10.1038/nrm3629.
  23. de Bruin RAM, Kalashnikova TI, Chahwan C, et al. Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell. 2006;23(4):483-496. doi:10.1016/j.molcel.2006.06.025.
  24. Caspari T, Hilditch V. Two distinct Cdc2 pools regulate cell cycle progression and the DNA damage response in the fission yeast S. pombe. PLoS One. 2015;10(7):e0130748. doi:10.1371/JOURNAL.PONE.0130748.
  25. Gonzalez-Medina A, Pazo E, Hidalgo E, et al. SWI/SNF and RSC remodeler complexes bind to MBF-dependent genes. Cell Cycle. 2021;20(24):2652-2661. doi:10.1080/15384101.2021.2008203.
  26. Forsburg SL, Rhind N. Basic methods for fission yeast. Yeast. 2006;23(3):173-183. doi:10.1002/YEA.1347.
  27. Kwon EJG, Laderoute A, Chatfield-Reed K, et al. Deciphering the transcriptional-regulatory network of flocculation in Schizosaccharomyces pombe. PLoS Genet. 2012;8(12):e1003104. doi:10.1371/journal.pgen.1003104.
  28. Li R, Li X, Sun L, et al. Reduction of ribosome level triggers flocculation of fission yeast cells. Eukaryot Cell. 2013;12(3):450-459. doi:10.1128/EC.00321-12.
  29. Shevchenko A, Tomas H, Havlis J, et al. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856-2860. doi:10.1038/nprot.2006.468.
  30. Keough T, Lacey MP, Strife RJ. Atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry of sulfonic acid derivatized tryptic peptides. Rapid Commun Mass Spectrom. 2001;15(23):2227-2239. doi:10.1002/RCM.499.
  31. Blom N, Sicheritz-Ponten T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4(6):1633-1649. doi:10.1002/PMIC.200300771.
  32. Kang H. Identification of regulatory circuits for the LAMMER kinase signaling in Schizosaccharomyces pombe Thesis. Chungam National University, 2007.
  33. Aligianni S, Lackner DH, Klier S, et al. The fission yeast homeodomain protein Yox1p binds to MBF and confines MBF-dependent cell-cycle transcription to G1-S via negative feedback. PLoS Genet. 2009; 5(8):e1000626. doi:10.1371/journal.pgen.1000626.
  34. Lee K, Du C, Horn M, et al. Activity and auto-phosphorylation of LAMMER protein kinases. J Biol Chem. 1996;271(44):27299-27303. doi:10.1074/jbc.271.44.27299.
  35. Ayte J, Leis JF, Herrera A, et al. The Schizosaccharomyces pombe MBF complex requires heterodimerization for entry into S phase. Mol Cell Biol. 1995;15(5):2589-2599. doi:10.1128/MCB.15.5.2589.
  36. Enserink JM, Kolodner RD. An overview of Cdk1-controlled targets and processes. Cell Div. 2010; 5(1):11. doi:10.1186/1747-1028-5-11.
  37. Caetano C, Klier S, de Bruin RAM. Phosphorylation of the MBF repressor Yox1p by the DNA replication checkpoint keeps the G1/S cell-cycle transcriptional program active. PLoS One. 2011;6(2):e17211. doi:10.1371/journal.pone.0017211.
  38. Goossens KVY, Ielasi FS, Nookaew I, et al. Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. MBio. 2015;6(2):1-16. doi:10.1128/mBio.00427-15.