• Title/Summary/Keyword: LAMMER kinase

Search Result 10, Processing Time 0.034 seconds

Role of LAMMER Kinase in Cell Wall Biogenesis during Vegetative Growth of Aspergillus nidulans

  • Choi, Yu Kyung;Kang, Eun-Hye;Park, Hee-Moon
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.422-426
    • /
    • 2014
  • Depending on the acquisition of developmental competence, the expression of genes for ${\beta}$-1,3-glucan synthase and chitin synthase was affected in different ways by Aspergillus nidulans LAMMER kinase. LAMMER kinase deletion, ${\Delta}lkhA$, led to decrease in ${\beta}$-1,3-glucan, but increase in chitin content. The ${\Delta}lkhA$ strain was also resistant to nikkomycin Z.

LAMMER Kinase Lkh1 Is an Upstream Regulator of Prk1-Mediated Non-Sexual Flocculation in Fission Yeast

  • Park, Yoon-Dong;Kwon, Soo Jeong;Bae, Kyung Sook;Park, Hee-Moon
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.236-241
    • /
    • 2018
  • The cation-dependent galactose-specific flocculation activity of the Schizosaccharomyces pombe null mutant of $lkh1^+$, the gene encoding LAMMER kinase homolog, has previously been reported by our group. Here, we show that disruption of $prk1^+$, another flocculation associated regulatory kinase encoding gene, also resulted in cation-dependent galactosespecific flocculation. Deletion of prk1 increased the flocculation phenotype of the $lkh1^+$ null mutant and its overexpression reversed the flocculation of cells caused by lkh1 deletion. Transcript levels of $prk1^+$ were also decreased by $lkh1^+$ deletion. Cumulatively, these results indicate that Lkh1 is one of the negative regulators acting upstream of Prk1, regulating non-sexual flocculation in fission yeast.

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Function of Dual Specificity Kinase, ScKns1, in Adhesive and Filamentous Growth of Saccharomyces cerevisiae (Saccharomyces cerevisiae의 균사형 생장에서 이중 특이성 인산화 효소, ScKns1p의 기능 분석)

  • Park, Yun-Hee;Yang, Ji-Min;Yang, So-Young;Kim, Sang-Mi;Cho, Young-Mi;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.110-116
    • /
    • 2011
  • In the previous study with the Saccharomyces cerevisiae S288c strains, no known function of the dual specificity kinase, ScKns1, was reported because its gene deletion did not show any noticeable phenotypic changes. Recent study with fission yeast, however, revealed the involvement of the LAMMER kinase in flocculation, filamentous growth, oxidative stress, and so on. Therefore we made Sckns1-deletion mutants with the ${\Sigma}1278b$-background, with which one can induce filamentous and adhesive growth in contrast to those of the S288c-background. The $Sckns1{\Delta}$ strains of both haploid and diploid showed defect in filamentous growth under conditions for inducing the filamentous growth such as nitrogen starvation and butanol treatment. Both kinds of the deletion mutants also showed decrease in adhesive growth on agar surface. Interestingly enough the defects of the $Sckns1{\Delta}$ strains were suppressed by the over-expression of each gene for the components of the MAPK signaling pathway such as STE11, STE12, and TEC1, respectively, but not by the upstream components, RAS2 and STE20, respectively. Although further investigations are required, these results indicate that the ScKns1 may act in place between the Ste20 and the Ste11 of the S. cerevisiae MAPK cascade.

Possible Roles of LAMMER Kinase Lkh1 in Fission Yeast by Comparative Proteome Analysis

  • Cho, Soo-Jin;Kim, Young-Hwan;Park, Hee-Moon;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.108-112
    • /
    • 2010
  • To investigate the possible roles of LAMMER kinase homologue, Lkh1, in Schizosaccharomyces pombe, whole proteins were extracted from wild type and lkh1-deletion mutant cells and subjected to polyacrylamide gel electrophoresis. Differentially expressed proteins were identified by tandem mass spectrometry (MS/MS) and were compared with a protein database. In whole-cell extracts, 10 proteins were up-regulated and 9 proteins were down-regulated in the mutant. In extracellular preparations, 6 proteins were up-regulated in the lkh1+ null mutant and 4 proteins successfully identified: glycolipid anchored surface precursor, $\beta$-glucosidase (Psu1), cell surface protein, glucan 1,3-$\beta$-glucosidase (Bgl2), and exo-1,3 $\beta$-glucanase (Exg1). These results suggest that Lkh1 is involved in regulating cell wall assembly.

Temperature Sensitivity of Sigma Background Is Suppressed by the Disruption of ScKNS1 in Saccharomyces cerevisiae (ScKns1 결손에 의한 Saccharomyces cerevisiae ${\Sigma}1278b$ 균주의 온도 민감성 억제 효과)

  • Park, Yun-Hee;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.167-169
    • /
    • 2011
  • The Saccharomyces cerevisiae S288c strain does not show haploid and diploid filamentous growth, and biofilm formation, because it has a flo8 nonsense mutation unlike ${\Sigma}1278b$ strain which has a FLO8 gene. During the heat stress experiments to investigate the role of ScKns1, LAMMER kinase in S. cerevisiae, we found that ${\Sigma}1278b$ strain revealed heat sensitivity at $37^{\circ}C$, a mild heat stress in contrast to S288c strain. We also found that the disruption of ScKns1 and the addition of sorbitol suppress heat sensitivity of ${\Sigma}1278b$ strain. These results suggest the possibility that Flo8 and ScKns1 may interact to transducer a signal for regulating heat stress through a novel signaling pathway.