• Title/Summary/Keyword: cell walls

Search Result 423, Processing Time 0.03 seconds

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

Scanning Electron Microscopy Studies of Saccharomyces cerevisiae Structural Changes by High Hydrostatic Pressure Treatment

  • Bang, Woo-Suk;Swanson, Barry G.
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1102-1105
    • /
    • 2008
  • The structural change and leakage of cellular substances of Saccharomyces cerevisiae attributed by high hydrostatic pressure (HHP) treatment were observed with scanning electron microscopy (SEM). S. cerevisiae (ATCC16664) was inoculated in apple juice for 10 min at $23^{\circ}C$ and the apple juice treated at 138, 207, 276, 345, and 414 MPa pressure for 30 sec at $23^{\circ}C$. Increased of roughness, elongation, wrinkling, and pores on yeast cell surfaces, the yeast cell walls were severely damaged by HHP treatment from 276 to 414 MPa. Inactivation of S. cerevisiae by HHP is dependent on structural changes on the cell walls observed with SEM.

Microscopic Study on the Laser Surface-Melted Alloy 600

  • Lim, Yun-Soo;Cho, Hai-Dong;Kuk, Il-Hiun;Kim, Joung-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.347-352
    • /
    • 1996
  • Studies on tile microstructural and compositional changes in sensitized Ni base Alloy 600 by laser surface melting have been carried out using TEM equipped with EDXA. The microstructure of the laser melted zone was mainly consisted of fine cells, and along the cell and grain boundaries, Cr enrichment due to its segregation was observed. Cr carbides having formed along the grain bundaries during the sensitization treatment have been completely dissloved. The cell walls were decorated with dislocations and the very tiny precipitates, found to be Ti(CN) type, were distributed randomly along the cell walls with tangled dislocations around them.

  • PDF

Switching characteristics of a pixel-isolated bistable twist-splay nematic liquid crystal cell

  • Song, Dong-Han;Lee, Seong-Ryong;Kim, Jae-Chang;Yoon, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.502-504
    • /
    • 2009
  • We demonstrate a pixel-isolated bistable twist-splay namatic (PI-BTSN) liquid crystal (LC) cell which has two stable states of splay and ${\pi}$-twist. Each state is stabilized by a multi-dimensional anchoring effect of pixel-isolating polymer walls without any chiral additives. Polymer walls are formed around the pixel region by anisotropic phase separation between LCs and reactive mesogens. Switching between the two states is archived by using vertical and horizontal electric fields. The memory mode of the fabricated LC cell has shown infinity memory time.

  • PDF

A New Method of Extracting Whole Cell Proteins from Soil Microorganisms Using Pre-treatment of Ammonium Hydroxide

  • Kang, Han-Chul;Kim, Jong-Bum;Roh, Kyung Hee;Yoon, Sang-Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • Efficient extraction of total proteins from soil microorganisms is tedious because of small quantity. In this regard, an improved method for extraction of whole cell proteins is developed from soil microorganisms, Saccharomyces cerevisiae and Pichia pastoris. of which the cell wall are very strong. Pretreatment with NH4OH prior to the final extraction using NaOH/SDS was tried under the basis that ammonium ion was possible to enhance the permeability and/or to weaken the yeast cell walls. The pre-treatment of yeast cells with NH4OH drastically enhanced the protein extraction when it was compared with control (without NH4OH pre-treatment). At the pre-treatment of 0.04 N NH4OH at pH 9.0, about 3 fold of proteins was obtained from p. pastoris. Ammonium hydroxide appears to penetrate into the yeast cell walls more readily at basic pH. The effect of NH4OH pretreatment was pH dependent. The methods developed in this experiment might be applicable for an effective extraction of yeast proteins for the purpose of biochemical studies, especially proteomic analysis.

Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium: Transition to the Post Genomic Era

  • Jun, H.S.;Qi, M.;Ha, J.K.;Forsberg, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.802-810
    • /
    • 2007
  • Fibrobacter succinogenes, a Gram-negative, anaerobic ruminal bacterium is a major fibre digesting species in the rumen. It intensively degrades plant cell walls by an erosion type of mechanism, burrowing its way through the complex matrix of cellulose and hemicellulose with the release of digestible and undigested cell wall fragments. The enzymes involved in this process include a combination of glucanases, xylanases, arabinofuranosidase(s) and esterases. The genome of the bacterium has been sequenced and this has revealed in excess of 100 putative glycosyl hydrolase, pectate lyase and carbohydrate esterase genes, which is greater than the numbers reported present in other major cellulolytic organisms for which genomes have been sequenced. Modelling of the amino acid sequences of two glycanases, CedA and EGB, by reference to crystallized homologs has enabled prediction of the major features of their tertiary structures. Two dimensional gel electrophoresis in conjunction with mass spectroscopy has permitted the documentation of proteins over expressed in F. succinogenes grown on cellulose, and analysis of the cell surfaces of mutant strains unable to bind to cellulose has enabled the identification of candidate proteins with roles in adhesion to the plant cell wall substrate, the precursor to cellulose biodegradation.

Behavior of Walls of Open-cell Caissons Using Filler under Abnormally High Waves (고파랑 대비 채움재를 이용한 오픈 셀 케이슨의 전단 벽체 거동 분석)

  • Seo, Jihye;Won, Deokhee;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • In order to cope with the abnormally high waves during the storm surge due to climate change, various methods have been proposed for interlocking adjacent caissons to enhance stability of harbor structures. Among the methods, it was studied the method based on an open-cell caisson having reduction effect increasing the cohesion with adjunction caissons by filling materials such as crushed rocks in an inter-cell formed by two facing open-cells which consist of transverse walls. It is necessary to investigate the shear behaviors of an inter-cell to secure the stability using calculating shear forces on inter-cell under oblique wave loadings. It was analyzed the shear force share ratio with the length of internal and external wall and the number of internal walls. Numerical results show that 60~70% of the shear load is transmitted to adjacent caisson through the internal walls, more than 30% is through the external wall. It was applicable in the assumption that filling materials was uniformly distributed in inter-cells, and further studies were worth consideration on other conditions under construction.

Effect of Delayed Inoculation After Wounding on the Development of Anthracnose Disease Caused by Colletotrichum acutatum on Chili Pepper Fruit

  • Kim, Sang-Gyu;Kim, Yn-Hee;Kim, Heung-Tae;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.392-399
    • /
    • 2008
  • Detached chili pepper fruits were inoculated with the conidial suspension of Colletotrichum acutatum JC-24 simultaneously (simultaneous inoculation, SI) and at delayed time (delayed inoculation, DI) after wounding with (delayed wound inoculation, DWI) or without additional wounding (delayed non-wound inoculation, DNI) at the inoculation time. Disease severity was significantly lowered by DNI, compared to SI. By DNI, the disease reduction rates were proportional with the length of delayed time, and greater at the high temperature range (18, 23 and $28^{\circ}$) than at the low temperature ($13^{\circ}$) tested. DWI was also effective in reducing the disease severity especially at 18oC; however, its effectiveness was lower than for DNI. In light microscopy, parenchyma cells at the wounding sites were modified structurally, initially forming new cell walls crossing cytoplasm, enlarged with multiple periclinal cell divisions, and finally layered like wound periderms. In DWI, the above structural modifications occurred, showing the restriction of the fungal invasion by the cell walls in enlarged modified cells, while no definite cellular modifications were found with proliferation of fungal hyphae in SI. Sclerenchyma-like cells with thickened cell walls were proliferated around the wounding sites, which were partially dissolved by DWI, probably leading to some disease development. All of these results suggest that the decline of the anthracnose disease in pepper fruit by the delayed inoculations may be derived from the structural modifications related to the healing processes of the previous wound inflicted on the tissues.

Natural convection induced by free surface heat flux and temperature difference between left and right walls in glass melting furnace (유리용융로에서 자유표면 열유속과 좌우벽면 온도차에 의한 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3706-3713
    • /
    • 1996
  • A numerical study on natural convection induced by free surface heat flux and cold left and hot right walls in glass melting furnaces has been performed. A function of heat flux derived from the combustion environments of actual glass melting furnace is applied to thermal boundary condition at free surface. Fundamentally there exist two flow cells in cavity (left counterclockwise one and right clockwise one). The effects of heat flux and Rayleigh number are investigated through two-dimensional steady-state assumption. The convection strength of two flow cell located in left region continuously increases. In the mean time the strength of flow cell in right region increases and then decreases. Critical Rayleigh number in which two flow cells take place above and below show linear dependence on the free surface heat flux. To maintain the traditional flow pattern (left and right flow cells) in glass melting furnace, Rayleigh number is recommended to be below 10$^{5}$ .

In Vitro Culture of Endothelial Cell and Smooth Muscle Cell for Studying Vascular Diseases

  • Kim, Joo-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • Endothelial cells play a key role in pathological processes such as cancer cell metastasis, atherosclerosis, and diabetic retinopathy. Vascular smooth muscle cells directly involve in the formation of atheroma in atherosclerosis. Some kinds of the endothelial cells are simply harvested from the umbilical veins, the tunica intima of aortic walls, the retina using various enzymes solutions. Those purely isolated cells provide a powerful tool in vitro studies of the endothelial cell related diseases. In this context, the cultured smooth muscle cells after the isolation from the tunica media of aortic walls are also used for elucidating the pathogenesis of atherosclerosis. Here, I briefly introduce articles that include the isolation of human umbilical vein endothelial cells(HUVEC), aortic endothelial and smooth muscle cells, retinal microvascular endothelial cells(RMEC), as well as the diseases' applications of these cells.

  • PDF