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Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium:
Transition to the Post Genomic Era*
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ABSTRACT : Fibrobacier succinogenes, a Gram-negative, anaerobic ruminal bacterium is a major fibre digesting species in the
mmen. It mtensively degrades plant cell walls by an erosion type of mechanism, burrowing 1ts way through the complex matrx of
cellulose and hemicellulose with the release of digestible and undigested cell wall tragments. The enzyvmes involved in this process
include a combination of glucanases, xylanases, arabinofuranosidase(s) and esterases. 1he genome of the bacterium has been sequenced
and this has revealed mn excess of 100 putative glvcosyl hvdrolase, pectate lvase and carbohydrate esterase genes, which 1s greater than
the numbers reported present in other major cellulolvtic organisms for which genomes have been sequenced. Modelling of the amino
acid sequences of two glycanases, CedA and EGB, by reference to crystallized homologs has enabled prediction of the major features of
their tertiary structures. 1wo dimensional gel electrophoresis in conjunction with mass spectroscopy has permitted the documentation of
proteins over expressed in K succinogenes grown on cellulose, and analysis of the cell surtaces of mutant strains unable to bind to
cellulose has enabled the dentification of candidate proteins with roles in adhesion to the plant cell wall substrate, the precursor to
cellulose biodegradation. (Key Words : Cellulose, Cell Walls, Fibrobacrer succinogenes, Cellulase, Xylanase, Fibrobacter intestinalis)

INTRODUCTION

Grasslands and savannas. covering about 20% of the
earth’s landscape are a major source of nutrients for wild
and domestic herbivores. In addition. annual forage crops
are often the primary source of nutrients for domestic
herbivores. To maximize the value of these resources there
is a continuing search for methods to improve the
digestibility of both grasses and forage crops and the focus
of these studies is the plant cell wall (Barriere et al., 2003).
The cell wall is composed of an intertwined mesh of mainly
cellulose, hemicellulose, and pectin (Cosgrove, 2003), but
as the plant ages there usually is an increased content of
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lignin, likely the only component of the cell wall that is
highly resistant to microbial degradation (Grabber et al.
2004). Satter et al. (1999) presented data demonstrating no
relationship between lignin content and in viro neutral
detergent fibre degradability although other studies have
shown an association between lignin content and
indigestible neutral detergent fibre (Hulhtanen et al.. 2006).
and with careful selection for strain fitness. genetic
reduction in lignin concentration of forages can increase the
availability of energy from cell-wall polysaccharides.
improving the efficiency of livestock production (Casler et
al.. 2002; Grabber et al., 2004). Digestibility improvements
may result from either manipulation of the genome of either
the plant (Barriere et al. 2003) or the fibre digestive
capabilities of the ruminal bacteria (Krause et al.. 2003). or
in the case of harvested forage by downstream processing
(Huhtanen et al.. 2006). With all of these approaches more
knowledge of the mechanism of plant cell wall digestion by
predominant ruminal organisms will contribute to the
success of programs to improve forage utilization by
ruminant and monogastric animals. The objective of this
review is to survey recent advances in our understanding of
the diversity. function and structure of microbial cellulases
and hemicellulases with a focus on the primary cellulolytic
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ruminal bacterium Fibrobacter succinogenes.

MAJOR CELLULOLYTIC BACTERIA AND THEIR
ASSOCIATION WITH PLANT CELL WALLS

The three species of mminal bacteria considered to be
primarily responsible for plant cell wall biodegradation are
F. succinogenes. Ruminococcus atbus. and R flavefaciens
(Forsberg et al., 1997; Krause et al. 2003). Thev are
primarily associated with the solid phase of rumen contents
and F succinogenes often is the dominant population. and
the most firmly attached (Michalet-Doreaun et al.. 2001).
Koike et al. (2003) in a study of the kinetics of binding of
bacteria to plant materials reported that 7 succinogenes. R.
albus and R flavefaciens in vivo begin binding to hay stems
within 3 minutes and increase to a maximum at 24 h of 10°
cells per gram of drv matter for F succinogenes and 10° per
gram of drv matter for R flavefaciens although for R. albus
maximum binding of 10° per gram of dry matter did not
occur until 48 h. ¥ swecinogenes was the most dominant of
the three in whole rumen digesta and on hay stems
suspended in the rumen. Ozutsumi et al. (2006) reported
that the numbers of £ succinogenes cells in a faunated
rumen was 2.4-fold higher than in an unfaunated rumen
while the numbers of R. afbus and R. flavefaciens were
decreased by 3.5 and 2-fold. respectively. Whether the
apparent avoidance of predation by protozoa is related to
the firmness. or location of binding of F succinogenes to
plant cell walls. or to some other characteristic of the
bacterium, will prove particularly interesting to determine,
and could have applied applications.

Moving to the species level. an interesting question is
how the substrate may influence the proportions of different
strains of a fibrolvtic species to become the dominant
population. Koike et al. (2004) studied the enrichment of
strains F. sirccinogenes on different forages. F succinogenes
is divided into 4 different phvlogenetic groups based on
comparative sequence analysis of 165 IDNA (Amann et al.,
1992). Group 1 is differentiated from other groups by its
pleomorphic coccoid morphology and poor ability to digest
cellulose in agar medium and includes strains S85. A3C.
BL2, and BIl: groups 2 and 4 are phenotypically
indistinguishable and include strains REH9-1 and GC3, and
MCIL. respectively, while group 3 produces a vellow
pigment and requires vitamin B12 and consists of strains
HM2 and MB4. Of the four groups. group | dominated on
ruminally incubated hay stems and when wethers were fed
fresh orchard grass. while group 3 predominated in the
rumen of wethers and steers received a hay diet (Koike et
al., 2004). This information in conjunction with previously
published research led to the conclusion that group | of £
stccinogenes which includes strain S85 may contribute
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more to rumen fibre digestion than the other groups.

DIGESTION OF PLANT CELL WALLS
BY F. SUCCINOGENES

Accessibility to cellulose digestion sites in the cell wall
matrix has been suggested as the rate-limiting factor in
cellulose digestion (Dehority and Tirabasso. 1998). It has
been proposed that access to cell wall polymers is limited
by the small pore size between polymers. which is in the
order of 2 to0 4 nanometers. and is not sufficient to allow
free diffusion into the wall matrix of simple globular
enzvmes with masses greater than 20 kilodaltons (kDa)
(Gardner et al., 1999). Furthermore, the authors reported
that the porosity was not modified during digestion with a
crude cellulase enzyme. They concluded that exclusion of
enzymes from the wall matrix by low porosity limits
bacterial attack in the mumen to a process of surface erosion.
Because the plant cell wall is a matrix of different poly mers
the process of attack by surface digestion infers that for
rapid digestion a combination of cellulase and
hemicellulase enzvines acting simultaneously is essential.
Matulova et al. (2005) indirectly and elegantly tested this
possibility by growth of £ succinogenes strain $85 on '>C
enriched wheat straw and assessing the products of
hydrolysis by a combination of nuclear magnetic resonance
spectroscopy. and sugar linkage and compositional analyses.
An important observation was the absence of acetylated
xvlooligosaccharides among the hydrolysis products
thereby documenting extensive enzymatic deacetylation.
since wheat straw cell wall materials are highly acetylated
(Bourquin and Fahey. Jr, 1994) Deacetylation is an
important step in cell wall digestion because it can enhance
the rate of degradation of cell walls (Wood and McCrae,
1986). The identified free sugars accumulating in the culture
fluid were ~ylose. arabinose and arabinoglucuronoxylan
oligosaccharides indicating extensive hemicellulase action.
There appeared to be simultaneous degradation of
hemicellulose and cellulose. and furthermore. amorphous
and crystalline regions of cellulose were degraded at the
same rate. which supports the concept of concerted action in
the surface degradation of the cell walls. Glucose did not
accumulate in the medium indicating rapid utilization of
cellooligosaccharides with minimal cellodextrin export and
recycling as previously suggested (Wells et al.. 1995). while
the accumulation of xvlose and arabinose was expected
since they are not used as a carbon source (Matte and
Forsberg. 1992a). However. 4-OMe-a-glicuronic acid was
not detected despite the presence of c-glucuronidase (Smith
and Forsberg. 1991), which may be explained by low
activity of the enzyme. In conclusion, this research clearly
documents that digestion of the cell wall matrix involves
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Table 1. Glvcosvl hvdrolases encoded by the S83 genome as compared to those present in the genomes of other cellulolvtic bacteria®

Name S83 I fusea YX C. thermacellim C. acetobuvlicum C. hurchinsanii
Cellulase 33 8 32 16 9
Xvlanase 24 4 4 13 11
Carbohydrate esterase ” 14 - - 2 -
Arabinofuranosidase 2 1 1 1 -
Mannanase 8 1 1 4 -
Lichenase 3 - - - -
a-Galactosidase 1 - - - -
B-Galactosidase 3 1 9 3 -
B-Glucosidase 2 3 9 5 8
Arabinase 3 - - 1 -
Pectate lyase 7 1 2 6 -
Amylase 4 3 1 1 2
Total 104 22 39 32 30

" Accession number: T, fiesca YN, CPOO008S: C. thermocelhiim, AABGOO0000MY, . acetobutylicran. AEQ01437. C. hutchnsoni, AABDOOG0000.
* Carbohydrate esterases include acetyl xylan esterases, coumaric acid esterases. and rhamnogalacturonan acetyl esterases.

the interaction of a complex amray of enzvmes.

ENZYMOLOGY OF PLANT CELL WALLS
DEGRADATION BY F. SUCCINOGENES

The paper by Matulova et al. (2003) clearly showed that
F succinogenes S85 possesses the essential enzy mes for the
digestion of wheat straw cell walls. This fact was originally
assumed because of the capacity of individual Fibrobacter
cells to burrow into the plant cell wall matrix (Cheng et al.,
1983). Enzymology and cloning studies prior to sequencing
the genome of F succinogenes had documented the
presence of seven endoglucanases. a cellodextrinase. a
chloride-stimulated cellobiosidase. a lichenase, and an -
glucuronidase (Forsberg et al.. 2000). Added to this array of
enzvimes were at least 3 xvlanases that produce
xylooligosaccharides as products (Jun et al. 2003). an
arabinose debranching xyvlanase (Matte and Forsberg,
1992b). at least three acety] xvlan esterases (McDermid et
al., 1990a: Kam et al.. 2003), an arabinofuranosidase and a
ferulic acid esterase (McDermid et al.. 1990b). Many of the
genes coding for these enzymes were cloned and sequenced.
The debranching nature of both the acetvlxylan esterase and
the one xvlanase ¢learly points to the very important roles
of this group of enzymes in plant cell wall biodegradation
because they improve access of other enzymes to previously
inaccessible substrates.

Béra-Maillet et al. (2004) conducted experiments to
determine the presence of 10 glvcosyl hvdrolase genes,
previously cloned from F succinogenes, in other strains of £
succinogenes and in F intestinalis strain NR9. Almost all of
the glvcosyl hyvdrolase genes were detected in strains of £
succinogenes closely related to strain S85. and a few were
present in £ intestinglis NR9. Only the 118 kDa family fifty
one glvcosyl hvdrolase. ce/F. with family 11 and family 30
carbohydrate binding modules was detected in all strains of

F. succinogenes and in F intestinalis NR9. They noted that
cell and extracellular culture fluid samples from all strains
studied exlubited low hydrolytic activity on crystalline
cellulose. which confirmed earlier observations by others.
both published and unpublished. A concluding remark from
this study was that strain 885 of F succinogenes is a good
model for studving the fibrolytic properties of the species as
the strain has conserved the enzymatic characteristics
representative of the species.

To elucidate the role of adhesion of Fibrobacter cells in
the of digestion of cellulose. adhesion defective mutants
were isolated from both F succinogenes S85 (Gong and
Forsberg. 1989) and F intestinalis DR7 (Miron and
Forsberg. 1998). In both studies it was observed that the
mutants either grew more slowly on cellulose as a carbon
source. or not at all. but their growth on glucose was
unaffected. which suggested that the adhesion process was a
key factor in cellulose digestion. Antibodies prepared
against the wild type strains and adsorbed with the mutant
strains efficiently blocked adhesion of wild-type cells to
cellulose. which showed that key adhesins were not
synthesized by the non-adherent mutants (Miron and
Forsberg, 1999; unpublished data). Furthermore, the
adsorbed antibodies reacted with numerous cellulose
binding proteins in the outer membrane of both
succinogenes and F. intestinalis. When the cellulose-
binding proteins were treated by periodate oxidation, which
blocks sugar residues. the reaction with the antibodies were
reduced. These data suggest that adhesion is important in
cellulose digestion and that glycosvlated cellulose binding
proteins ranging from approximately 36 to 223 kDa may
have roles in the binding process.

THE POSTGENOMIC ERA

In 2001, the North American Consortium for the
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heads.

Genomics of Fibrolytic Ruminal Bacterial in conjunction
with  the Institmte  for  Genomics  Research
(http://www.tigrorg/) initiated projects to sequence the
genomes of the three principal fibrolytic bacteria. F
succinogenes  S83,  Ruminococcus albus 8 and R
Aavefaciens. Of these. the F succinogenes genome is the
only one that has been completed and closed (M. Morrison,
Personal Communication). The genome of F succinogenes
S85 is 3.8 mbp and contains 3252 open reading frames
putatively coding for proteins. Of these open reading frames.
104 code for putative enzvmes involved in plant cell wall
biodegradation including 83 glvcosyl hvdrolases, 7 pectate
Ivases and 14 carbohvdrate esterases (Morrison et al., 2003).
Among the glvcosyl hvdrolases 33 cellulases are present in
families 5. 8. 9. 10. 45, 51 and 74. and the 24 xylanases are
in families 10. 11. 30. 39 and 43. Only five of the cellulase
proteins have carbohydrate binding modules (CBMSs) while
14 xvlanases have CBMs. A comparison of the numbers of
putative plant cell wall hvdrolases in £ succinogenes as
compared with those in other fibrolvtic bacteria is shown in
Table 1. As is evident from the table. F. succinogenes has a
far greater number of cellulases. xylanases. carbohydrate
esterases and pectate lyases than the other bacteria. which in
part may help to explain its efficient digestion of plant cell
walls. However. no proteins were found with similarity to
known scaffoldin, cohesion or dockerin proteins
characteristic of cellulosomal cellulase complexes present
in the mminal bacteria Ruminococcus atbus and R.
Amvefaciens and the cellulolytic niminal fungi (Lynd et al..
2002 Doi and Kosugi. 2004). Furthermore. there were no
genes coding for cellulases from families 6 and 48. which
typically contain exoglucanases found in both cellulosomal
and non-cellulosomal cellulase svstems that degrade

cryvstalline cellulose. for example. that of hermobifida

JSusca. This information superimposed upon the fact that

once growth of F. succinogenes is interfered with. cellulose
biodegradation immediately ceases (Maglione et al.. 1997).
a characteristic very different from other cellulolytic
organisms, leads to the conclusion that the mechamism of
cellulose digestion by F succinogenes is very different from
that of other organisms in nature.

Despite the fact that availability of the genome has not
led to an immediate solution for the mechanism of cellulose
biodegradation by F. succinogenes. it has been valuable in
exploring the genome of F intestinalis DR7 by the
application of the technique of suppressive subtractive
hybridization (Qi et al. 2005). By the use of F
succinogenes strain S83 as the driver they identified 30
unique glyvcosyl hydrolases in strain DR7 that. on the basis
of the subtractive method. were genetically different from
those of F. succinogenes. However. once the cloned inserts
were sequenced, blast searches revealed that they aligned
with genes in the genome of F succinogenes. Four
belonged to glvcosyl hydrolase (GH) family 5. two to
family &. four to family 9. one to family 16. one to family
18. one to family 45, one to family 51 (Cel F: Malburg et al..
1997) and one to family 74. There were twvo family 43 and
one family 10 xvlanases. one family 26 mannanase. three
family 57 amylases. | family 77 a-glucanotransferases and
one carbohydrate phosphorylases. There were two pectate
Ivase families represented, two family 1 and one family 11.
There was one representative of the carbohydrate esterases.
a family 12 acetyl esterase. Of the 23 glycosyl hyvdrolase
genes tested for expression in F. infestinalis at least 16 were
expressed and § of these were expressed at a higher level
along with a pectate lyase. but none of the three xylanases
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Figure 2. (A) Predicted tertiarv structure of cellodextrinase CedA
(FSU2070) and (B) enlargement of active-site cleft (red box m A).
o-helices (green) and P-strands (red) are shown. The catalytic
residues are indicated as sticks (white, carbon chain;, blue,
nitrogen; red, oxvgen) and the distances (A) between molecules
are shown as dotted line.

or the acety] esterase were expressed. All of the glycanases
showed the highest similarity to their counterparts in F
succinogenes. However. when a BLASTX search was
conducted against the GenBank non-redundant sequence
database. not including the 7 succinogenes genome. half of
the genes showed highest similarity to those of C\tophaga,
indicating a close relationship between the cellulase
systems of these species. In contrast to the similarity of the
glycanases between the Fibrobacier species. there were
major differences between the two species in the numbers
of transposases and restriction modification enzymes. both
of which were more numerous in £ intestinalis.
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STRUCTURAL ANALYSIS OF SEVERAL
F. SUCCINOGENES CELLULASES

Molecular level structural analysis of the F
succinogenes $85 1.3-1.4-D-glucanase has been reported
for the enzyme in both the absence and presence of B-1.3-
L.4-cellooligosaccharides (Tsai et al.. 2005). This has
provided detailed knowledge of the subsites for binding of
glvcosyl residues during catalysis and the organization of
the catalytic site during cleavage of the glvcosidic bond.
Although providing a less complete description. the
availability of amino acid sequences of the glvcosyl
hydrolases offers the opportunity to model enzvmes by
reference to crystal structures of closely related cellulases.
This is accomplished by submission of the query sequence
to SWISS-MODEL server (http://swissmodel expasy.org)
(Schwede et al.. 2003). The predicted protein models are
viewed and analyzed using Swiss PDB-viewer (version 3.7)
and RasTop (version 2.1). Two cellulases have been
modelled. the glvcosyl hydrolase family 5 cellodextrinase.
CedA (Iyvo and Forsberg. 1994) and the GH family 9
endoglucanase EGB (Broussolle et al.. 1994).

CedA. now Cel5C (FSU2070). has a mass of 41.9 kDa.
[t exhibits low activity on amorphous cellulose, limited
activity  on nucrocrystalline cellulose. but cleaves
cellooligosaccharides releasing cellobiose as the primary
product (Huang and Forsberg. 1987). CedA exhibits
homology with the CelC endoglucanase from Clostridium
thermocellum that was previously crystallized (Figure 1.
Doniinguez et al.. 1996) and has enabled modelling of the
three dimensional structure. The model shown for CedA in
Figure 2 illustrates the general organization of w«-helices
and B-sheets. forming an {(a/P)s-barrel, a common protein
fold of cellulases belonging to GH 5 family. The putative
catalytic residues Glu 146. Glu 279 and His 95 are
illustrated.

The second enzvme. endoglucanase EGB. now Cel9G
(FSUO451), has a mass of 62.5 kDa and exhibits high
catalytic activity on barley f-glucan. lichenan and
carboxymethy] cellulose producing the hydrolysis products
cellobiose and cellotriose from carboxymethyl cellulose
(Broussolle et al. 1994: Forano et al.. 1994). It has a
requirement for divalent cations satisfied by magnesium
and calcium. This enzyme exhibits high similarty to the
family 9 cellobiohydrolase. CbhA from C. thermocellum
(Figure 3. Schubot et al.. 2004). CbhA is a multimodular
enzvme comprising an N-termunal CBM4, an Ig-like
module, a catalytic module. several unknown modules. a
CBM3. a dockerin module. and the catalytic region contains
two atoms of calcium that are essential for activity. The
structure on which the EGB enzyme was modelled was that
of the CbhA Ig-like module and the catalytic module. It is
fascinating to note from the alignment that EGE is missing
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9 showmg smmilarity to Cel9G (fommerly EGB. FSU(Q431). Cel_Xe¢

(QAVVY]) from Nanthomonas campestris. CelD_Fs (P77864) from F. succinagenes S83. CelVA_Pa (QQAPG3) from Pseudomonas
aeruginosa, EngO_Cc (Q6DTY2) from Clostridium cellulovorans. CelE_TT (QO8166) from Thermobifida fusca, CelK_Ct (Q68438)

trom Clostridiunt thernocellun, CbhA_Ct (Q6RSNS) from .

thermaocettunm. The catalytic sites are indicated by red arrow heads. The

loop regions responsible for the exo activity of CbhA of C. thermocellunt are highlighted by a red rectangular outline.

the loop regions responsible for the exo-activity of CbhA.
The model for EGB in Figure 4 illustrates a topology of the
(a/on)s-barrel mainly found in GHY cellulases. with the
location of the putative catalyvtic residues. Asps 137 and 160
and Glu 537. Precise details of the structure and locations of
the cation binding sites will require the crvstal structure for
the enzyme.

DECODING THE CELLULASE SYSTEM
OF FIBROBACTER SPECIES

The easiest path to solving the mechanism of crvstalline
cellulose biodegradation by F  swccinogenes would
probably be through transposon mutagenesis (Reznikoff et

al.. 2004) of the bacterium and characterization of the
mutated genes. Unfortunately, this technique is not
available for genetic manipulation of # succinogenes at this
time. Therefore the focus will be on more detailed
characterization of the cellulase system: which includes the
identification of proteins overproduced when cells are
grown with cellulose as a carbon source as compared when
cells are grown on glucose and cellobiose. identification of
cellulose binding proteins. and those missing from non-
adherent mutants previously isolated (Gong and Forsberg,
1989). An interesting feature with the non-adherent mutants
is that several exhibit differential binding to amorphous and
crystalline cellulose. From this observation one presumably
can conclude that there are different cellulose binding
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(A)

(B

Figure 4. (A) Predicted tertiary structure of Cel9G (formerly
EGB: FSU2070) and (B) enlargement of active-site cleft (red box
in A). o-helices (green) and B-strands (red) are shown. The
catalvtic residues are indicated as sticks (wlate, carbon cham:
blue, nitrogen; red, oxvgen) and the distances (A) between
molecules are shown as dotted line.

proteins for adhesion to amorphous and to crvstalline
cellulose. We have discovered that these mutants are
pleiotropic, exhibiting multiple defects. which perhaps
suggests that they are mutated at different levels of a
hierarchical control system. Consequently. there remain
many novel aspects of the cellulase system of this group of
bacteria that require resolution.

CONCLUSION

The information presented in this short review
documents that Fibrobacter siccinvgenes has an important
role in the mminal environment. The mechanism by which
it degrades the hemicellulose fraction of plant cell walls by

Jun et al. (2007) Asian-Aust. . dnim. Sci. 2003):802-810

the combination of xylanases and debranching enzymes is
now abvious although more detailed information is needed
to better understand the functionality of the enzymes
involved. Similarly pectin metabolism will yield to
enzymological analysis. However. despite the identification
of numerous cellulase enzymes. there is still the challenge
of solving the mechanism of cellulose digestion. Part of this
puzzle may be contained in the open reading frames that are
categorized as coding for hypothetical. conserved
hypothetical and lipoproteins that account for over half of
the open reading frames of the genome. and await
assessment to determine whether they are expressed. and of
those expressed to characterize their functionality.
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