• 제목/요약/키워드: cell stimulation

검색결과 1,116건 처리시간 0.034초

Stimulation of Osteogenic Differentiation in Stromal Cells of Giant Cell Tumour of Bone by Zoledronic Acid

  • Yang, Tao;Zheng, Xiao-Fei;Li, Mei;Lin, Xi;Yin, Qing-Shui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5379-5383
    • /
    • 2013
  • Therapeutic effects of zoledronic acid (ZOL) on giant cell tumour of bone (GCT) have been proven. Apoptosis induction was considered to be one of the mechanisms of ZOL tumour inhibition. In this study, we presented the possibility of an osteogenic differentiation stimulation mechanism of ZOL and further investigated dosage and time effects. We treated stromal cells of GCT (GCTSC) with ZOL for 48 hours at different concentrations ($0{\mu}M$, $0.01{\mu}M$, $0.1{\mu}M$, $1{\mu}M$, 5${\mu}M$, $30{\mu}M$) and assessed apoptotic and osteogenic differentiation markers with immunohistochemical techniques and real-time quantitative RT-PCR. Our results suggested that ZOL enhanced mRNA expression of Cbfa-1, osterix and osteocalcin genes with a maximum effect at $1{\mu}M$ in GCTSC. Time course experiments indicated a time dependent osteogenic differentiation effect. In conclusion, ZOL may be considered as an adjuvant in the treatment of GCT not only by inducing apoptosis but also by stimulating osteogenic differentiation of remaining tumor stromal cells after surgery.

인삼 추출물이 세포의 산소소모에 미치는 영향 (EFFECT OF GINSENG EXTRACT ON OXYGEN CONSUMPTION IN RAT LIVER MITOCHONDRIA)

  • TSO Wung-Wai
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1984년도 학술대회지
    • /
    • pp.141-144
    • /
    • 1984
  • 인삼이 강장제인 약용식물로 인식됨에 따라 세포에 대한 인삼 추출물의 효과를 연구하기 위해 미생물을 실험재료로 연구한 결과, 인삼이 두 단계로 세포 호흡에 영향을 미치는 것으로 관찰되었으며 (Tso and Fung, Microbios, Lett. 13 : $7{\~}12$., Tso, Acta Microbiologies sinica 21 : $53{\~}56$)이것은 세포 에너지 대사 변화에 중요한 역할을 할 수 있다는 것을 시사해 주었다. 이와 같은 결과로 인삼이 세포의 mitochondria 에 의한 산소 소모에 미치는 효과를 검토한 결과, 일정한 pH 조건하에서 인삼은 호흡을 촉진시켰으며, 일정농도 이상 투여하였을 경우 다소의 억제효과를 보였다. 위의 결과들은 세포의 mitochonbria 호흡에 미치는 인삼의 효과를 재확인하는 것으로 강장제로서의 인삼의 가치를 뒷받침해 주고 있다.

  • PDF

Biological Effects of Vinca minor extract; Tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity in keratinocytes

  • Kim, Jun-Sub;Yu, Il-Hwan;Joo, Ji-Hye;Nam, Gyeong Hoe;Jung, Kyung-Hwan;Chung, Young Soo;Lee, Hyang-Yeol
    • 한국응용과학기술학회지
    • /
    • 제33권4호
    • /
    • pp.788-794
    • /
    • 2016
  • Vinca alkaloids from plant Vinca minor have been investigated for their effects of tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity. The methanolic crude extract and the water-soluble fraction exhibited $IC_{50}$ value of 3.1 mg/mL and 2.1 mg/mL. Vinca minor extract treatment significantly increased ROS levels in HaCaT cells, in a concentration-dependent manner. Treatments of Vinca minor extract led to increase wound closure when compared with non-treatment. Low dose (0.1% or 0.3%) of extracts have not significantly affected, compared with that in controls. By contrast, 0.5% extract have dramatic effect on wound healing activity of keratinocytes. Effects of Vinca minor extract in a filter-based cell mobility assay appear similar to that of wound closure assay, which suggests that the Vinca minor extract have wound healing effects on skin.

Mimicking the Human Articular Joint with In Vitro Model of Neurons-Synoviocytes Co-Culture

  • Jakub Chwastek;Marta Kedziora;Malgorzata Borczyk;Michal Korostynski;Katarzyna Starowicz
    • International Journal of Stem Cells
    • /
    • 제17권1호
    • /
    • pp.91-98
    • /
    • 2024
  • The development of in vitro models is essential in modern science due to the need for experiments using human material and the reduction in the number of laboratory animals. The complexity of the interactions that occur in living organisms requires improvements in the monolayer cultures. In the work presented here, neuroepithelial stem (NES) cells were differentiated into peripheral-like neurons (PLN) and the phenotype of the cells was confirmed at the genetic and protein levels. Then RNA-seq method was used to investigate how stimulation with pro-inflammatory factors such as LPS and IFN𝛾 affects the expression of genes involved in the immune response in human fibroblast-like synoviocytes (HFLS). HFLS were then cultured on semi-permeable membrane inserts, and after 24 hours of pro-inflammatory stimulation, the levels of cytokines secretion into the medium were checked. Inserts with stimulated HFLS were introduced into the PLN culture, and by measuring secreted ATP, an increase in cell activity was found in the system. The method used mimics the condition that occurs in the joint during inflammation, as observed in the development of diseases such as rheumatoid arthritis (RA) or osteoarthritis (OA). In addition, the system used can be easily modified to simulate the interaction of peripheral neurons with other cell types.

척수손상 흰 쥐의 운동기능 회복에 미치는 손상부위 직접자극을 통한 기능적 자기자극치료 효과 (The Effect of Direct Functional Magnetic Stimulation of the Lesion on Functional Motor Recovery in Spinal Cord Injured Rat)

  • 조윤우;김수정;박해운;서정민;황세진;장성호;이동규;안상호
    • The Journal of Korean Physical Therapy
    • /
    • 제23권1호
    • /
    • pp.53-58
    • /
    • 2011
  • Purpose: The purpose of this study was to determine the effect of direct functional magnetic stimulation (FMS) of affected spinal cord on motor recovery following spinal cord injury in rats. Methods: After a contusion injury at the spinal level T9 using an NYU Impactor, functional magnetic stimulation was delivered by a magnetic stimulator through a round prototype coil (7 cm in diameter). Stimulation parameters were set as follows: repetition rate = 50 Hz (stimulus intensity 100% = 0.18 T), stimulation time = 20 min. Functional magnetic stimulation was administered twice a day, 5 days per week for 8 weeks starting 4 days after spinal cord injury. Functional magnetic stimulationwas delivered directly to the affected spinal cord. Outcomes of locomotor performance were assessed by the Basso Beattie Bresnahan (BBB) locomotor rating scale and by an inclined plane test weekly for 8 weeks. Results: In the BBB test, hindlimb motor function in the Functional magnetic stimulation group improved significantly more compared to the control group at 3, 4, 6, 7, and 8 weeks (p<0.05). In the inclined plane test, the angle of the plane in the functional magnetic stimulation group increased significantly more compared to the control group at 4, 5, 7, and 8 weeks (p<0.05). Conclusion: Our results demonstrate that direct Functional magnetic stimulation of the lesional site may have beneficial effects on motor improvement after spinal cord injury.

Transcriptional regulation of chicken leukocyte cell-derived chemotaxin 2 in response to toll-like receptor 3 stimulation

  • Lee, Seokhyun;Lee, Ra Ham;Kim, Sung-Jo;Lee, Hak-Kyo;Na, Chong-Sam;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1942-1949
    • /
    • 2019
  • Objective: Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. Methods: Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor ${\kappa}B$ ($NF{\kappa}B$) and activated protein 1 (AP-1) inhibitors. Results: The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of $NF{\kappa}B$ or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both $NF{\kappa}B$ and AP-1 transcription factors are required for the induction of chLECT2 expression. Conclusion: The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.

감각 자극과 치료적 환경이 외상성 뇌손상 흰쥐의 BDNF 발현에 미치는 영향 (The Effect of Sensory Stimulation and Therapeutic Environment on Expression of BDNF after Traumatic Brain Injury in the Rat)

  • 송주민
    • PNF and Movement
    • /
    • 제5권1호
    • /
    • pp.9-17
    • /
    • 2007
  • Purpose : The purpose of this study was to test the effect of balance training for proprioceptive and vestibular sensory stimulation and therapeutic environment on expression of BDNF after traumatic brain injury in the rat. Subject : Twelve Sprague-Dawley rats were randomly assigned into group I and group II. After traumatic brain injury, group I was housed in standard cage for 7 days. Group II was housed in therapeutic cage after balance training for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, the rats were sacrificed and cryostat coronal sections were processed individually in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section from immunohistochemistry using light microscope. Result : Immunohistochemical response of BDNF in lateral nucleus, purkinje cell layer, superior vestibular nucleus and pontine nucleus appeared very higher in group II than in group I Conclusion : The present result revealed that simultaneously application of balance training for proprioceptive and vestibular sensory stimulation input and therapeutic environment in traumatic brain injured rats is enhance expression of BDNF and it is facilitates neural plasticity.

  • PDF

상지구심성 입력에 의한 요수팽대부 척수세포의 활성화 (Activation of Lumbar Spinal Neurons by Forelimb Afferent Inputs in Cats)

  • 구자란;이애주;신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제23권2호
    • /
    • pp.409-420
    • /
    • 1989
  • Extracellular recordings were made from the spinal neurons in the lumbar enlargement of 16 cats before and during electrical stimulation of the radial nerve ipsilaterally and contralaterally. Only neurons activated by remote nerve stimulation (RNS) were included in sample. All the cell classes of spinal neurons which received afferents message from the skin and/or muscles were activated by RNS except LT cells. Approximately three quaters of cells activated by RNS had an inhibitory receptive field (RF) on the ipsilateral hindlimb and two thirds of RNS-activated neurons showed spontaneous activity. The most of these RNS-activated cells seemed to be in deep dorsal horn and in ventral horn as well. Stimulation of contralateral radial nerve produced activation of spinal neurons almost same degree as by ipsilateral nerve stimulation. The optimal stimulation parameters of radial nerve for activation of spinal cells were 5Hz-0.5 msec-2V while threshold stimulus for activation was approximately 0.18 V. Following close intra-arterial injection of $K^+$ ion excitability of RNS-activated neuron was increased in 4 of 8 cells whereas it was decreased in 2 of 8 cells. The results indicate that there are some spinal neurons in the lumbar enlargement of cats that can be activated by forelimb afferent $(A{\beta}\;&\;A{\delta})$ inputs.

  • PDF

스트렙토조토신 유도 당뇨 흰쥐에서 전기자극이 상처치유와 피부 비만세포에 미치는 영향 (Effects of Electrical Stimulation on Wound Healing and Skin Mast Cells in Streptozotocin-Induced Diabetic Rats)

  • 제갈승주;이경선;정옥봉;이재형
    • 대한임상검사과학회지
    • /
    • 제40권2호
    • /
    • pp.118-128
    • /
    • 2008
  • The aim of this study was to investigate the effect of electrical stimulation on healing of impaired wound and alteration of mast cells in experimental diabetic rats. Thirty male Sprague-Dawley rats were divided into three groups : incision (control), diabetes+incision (diabetes) and diabetes + incision + electrical stimulation (D/ES). Diabetes was induced in rats by streptozotocin (STZ) injection (60 mg/kg, one time) and 20 mm length incision wounds were created on the back after shaving hair. The electrical stimulation rats were treated with a current intensity of 30~50 V at 120 pps and $140{\mu}s$ for 10 days from 3 days after STZ injection. The lesion and adjacent skin tissues were fixed with 10% buffered formalin, embedded with paraffin. For wound healing analysis, hematoxylin-eosin (HE) and picrosirius red staining were performed. Mast cells (MC) were stained with toluidine blue (pH 0.5) and quantified at ${\times}200$ using a light microscope. The density of keratinocyte proliferation and microvessels in skin tissues were analyzed using a computerized image analysis system on sections immunostained with proliferative cell nuclear antigen (PCNA) and ${\alpha}$-smooth muscle actin (${\alpha}$-SMA), respectively. The results showed that the wound healing rate, collagen density and neoepidermis thickness, density of PCNA-positive cells and density of ${\alpha}$-SMA-positive vessels were significantly higher in D/ES rats than in diabetic rats. The density of MCs and degranulated MCs in D/ES rats were also significantly higher than those in diabetic rats. These findings suggest that the electrical stimulation may promote the tissue repair process by accelerating collagen production, keratinocyte proliferation and angiogenesis in the diabetic rats, and MCs are required for wound healing of skin in rats.

  • PDF

최적선형필터를 이용한 망막신경절세포 Spike Train으로부터의 시각자극 세기 변화 추정 (Estimation of Visual Stimulus Intensity From Retinal Ganglion Cell Spike Trains Using Optimal Linear Filter)

  • 류상백;김두희;예장희;김경환;구용숙
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.212-217
    • /
    • 2007
  • As a preliminary study for the development of electrical stimulation strategy of artificial retina, we set up a method fur the reconstruction of input intensity variation from retinal ganglion cell(RGC) responses. In order to estimate light intensity variation, we used an optimal linear filter trained from given stimulus intensity variation and multiple single unit spike trains from RGCs. By applying ON/OFF stimulation(ON duration: 2 sec, OFF duration: 5 sec) repetitively, we identified three functional types of ganglion cells according to when they respond to the ON/OFF stimulus actively: ON cell, OFF cell, and ON-OFF cell. Experiments were also performed using a Gaussian random stimulus and a binary random stimulus. The input intensity was updated once every 90 msec(i. e. 11 Hz) to present the stimulus. The result of reconstructing 11 Hz Gaussian and binary random stimulus was not satisfactory and showed low correlation between the original and reconstructed stimulus. In the case of ON/OFF stimulus in which temporal variation is slow, successful reconstruction was achieved and the correlation coefficient was as high as 0.8.