• Title/Summary/Keyword: cell growth yield

Search Result 420, Processing Time 0.035 seconds

Effect of Carbon Source Consumption Rate on Lincomycin Production from Streptomyces lincolnensis

  • Choi, Du-Bok;Cho, Ki-An
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.532-539
    • /
    • 2004
  • For efficient lincomycin production from Streptomyces lincolnensis L1245, various vegetable oils, natural nitrogen sources, and surfactants were investigated at the pilot-scale level in the flask. Olive oil as the sole carbon source was the most suitable one for producing lincomycin. When 20 g/lof olive oil was used, the lincomycin concentration and lipase activity reached 1.01 g/land 182 U/ml, respectively, after 5 days of culture. Among the various unsaturated fatty acids, when linolenic acid was used, the cell growth and lincomycin production were markedly decreased. On the other hand, when 0.2 g/l of oleic acid was added to the culture broth, the maximum lincomycin concentration was 1.0 g/l, which was about 1.7-fold higher than that obtained without the addition of oleic acid. Among the various natural nitrogen sources, pharmamedia or soybean meal was the most suitable nitrogen source. In particular, in the case of a mixture of 10 g/l of pharmamedia and soybean meal, 1.5 g/l of lincomycin concentration and 220 U/ml of lipase activity were obtained. When Span 180 was used as the surfactant, lincomycin production, lipase activity, and oil consumption increased. The correlation between the consumption rates of oil and lincomycin production in a culture using olive oil as the sole carbon source was also investigated. The lincomycin production depended on the consumption rate of olive oil. Using these results, fed-batch cultures for comparing the use of olive oil and starch as a conventional carbon source were carried out in a 5-1 fermentor. When olive oil was used as the sole carbon source, 34 g/l of olive oil was consumed after 7 days of culture. The maximum lincomycin concentration was 3.0 g/l, which was about 2.0-fold higher than that of starch medium after 7 days of culture. The product yield was 0.09 gig of consumed carbon source, which was about 3.0-fold higher than that of starch medium after 7 days of culture.

Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity

  • Kim, Byung-Hyuk;Kim, Dong-Ho;Choi, Jung-Woon;Kang, Zion;Cho, Dae-Hyun;Kim, Ji-Young;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1547-1554
    • /
    • 2015
  • The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

Effect of Culture Conditions on the production of Succinate by Enterococcus faecalis RKY1

  • Kang, Kui-Hyun;Yun, Jong-Sun;Ryu, Hwa-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Bioconversion of fumarate to succinate was anaerobically conduced in a synthetic medium containing glycerol as a hydrogen donor and fumarate as a hydrogen acceptor. We investigated the effects of pH, carbon and nitrogen sources, conversion substrate, and other culture conditions on the production of succinate using a nwely isoloated Enterococcus facalis PKY1. Addition of a variety of carbonates to the medium significantly increasd the rates of production of succinate. The production of succinate and cell growth were relatively satisfactory in the pH range of 7.0-7.6. By using glycerol as a hydrogen donor, high purity succinate was produced with few byproducts. Yeast extract as a sole nitrogen source was the most effective for producing succinalte. As a result, the optimum condition of biconversion was obtained at a medium containing 20g/I glycerol, 50 g/l fumarate, 15 g/l yeast extract, 10 g/l $K_2HPO_4$, 1 g/I NaCl, 50ppm $MgCl_2{\cdot}6H_2O$, 10ppm $FeSo_4{\cdot}7H_2O$, and 5 g/I $Na_2CO_3$ at pH 7.0-7.6. Under the optimum condition, a succinate concentration of 153 g/I was produced in 36 h. The total volumetric production rate and the molar yield of succinate were 4.3 g/l/h and 85%, respectively.

  • PDF

Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis

  • Ra, Chae Hun;Jung, Jang Hyun;Sunwoo, In Young;Kang, Chang Han;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.856-862
    • /
    • 2015
  • The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m2/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

Gestational Diabetes Affects the Growth and Functions of Perivascular Stem Cells

  • An, Borim;Kim, Eunbi;Song, Haengseok;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Ahn, Tae Gyu;Yang, Se-Ran;Na, Sunghun;Hong, Seok-Ho
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.434-439
    • /
    • 2017
  • Gestational diabetes mellitus (GDM), one of the common metabolic disorders of pregnancy, leads to functional alterations in various cells including stem cells as well as some abnormalities in fetal development. Perivascular stem cells (PVCs) have gained more attention in recent years, for the treatment of various diseases. However, the effect of GDM on PVC function has not been investigated. In our study, we isolated PVCs from umbilical cord of normal pregnant women and GDM patients and compared their phenotypes and function. There is no significant difference in phenotypic expression, response to bFGF exposure and adipogenic differentiation capacity between normal (N)-PVCs and GDM-PVCs. However, when compared with N-PVCs, early passage GDM-PVCs displayed decreased initial rates of cell yield and proliferation as well as a reduced ability to promote wound closure. These results suggest that maternal metabolic dysregulation during gestation can alter the function of endogenous multipotent stem cells, which may impact their therapeutic effectiveness.

Varietal characteristics of new white button mushroom 'Seolwon' in Agaricus bisporus

  • Lee, Byung-Joo;Lee, Mi-Ae;Kim, Yong-Gyun;Lee, Kwang-Won;Lee, Byung-Eui;Song, Ho-Yeon
    • Journal of Mushroom
    • /
    • v.12 no.2
    • /
    • pp.82-87
    • /
    • 2014
  • Commonly known as the button mushroom, Agaricus bisporus is one of the most widely cultivated mushroom species of edible fungi. In the breeding of new button mushroom, Seolwon was developed by crossing two homokaryons. Because of the predominantly pseudohomothallic life cycle, only a small percentage of homokaryotic meiospores are produced, which do not fruit. Homokaryotic cultures derived from these types of single spores produce a vegetative mycelium that contain a variable number of genetically identical nuclei per cell. After crossing two homokaryons, hybrids were cultivated on a small scale and on a commercial scale at a farm. The spawn was made by a commercial spawn producer and the spawned compost by a commercial compost producer. Mycelial growth of Seolwon on CDA was better at $25^{\circ}C$ when it was compared with that of Seolgang. The mature cap shape of new strain Seolwon is oblate spheroid and the immature cap shape is round to oblate spheroid. The cap diameter was 39.7 mm on average. In comparison with white strain Seolgang, the strain had a yield that was 11% higher. It produced fruiting bodies which had a higher weight on average per fruiting body and were 9.7% firmer with a good shelf life. Days of fruiting body were 1-2 days later than those of Seolgang. The physical characteristics such as springiness, chewiness, adhesiveness, gumminess were better than that of Seolgang.

Optimization of Xylanase Production from Paenibacillus sp. DG-22 (Paenibacillus sp. DG-22로부터 xylanase 생산의 최적화)

  • Lee, Yong-Eok
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.618-625
    • /
    • 2003
  • Investigations were carried out to optimize the culture conditions for the production of xylanase by Paenibacillus sp. DG-22, a moderately thermophilic bacterium isolated from timber yard soil. Xylanase production showed a cell growth associated profile. Xylanase activity was found only in the culture supernatant, while $\beta-xylosidase$ activity was mainly associated with the cells. The formation of xylanase activity was induced by xylan and repressed by glucose and xylose. The production profile of xylanase was examined with various commercial xylan and maximum yield was achieved with 0.1∼ 0.5% birchwood xylan. Among various nitrogen sources tested, yeast extract was optimal for the production of xylanase. The xylanase activity was inhibited by $Co^{2+},\; Cu^{2+},\; Fe^{3+},\; Hg^{2+}\;$ and$\;Mn^{2+}$ ions while $Ca^{2+},\; Mg^{2+},\; Ni^{2+},\; Zn^{2+}$ions and DTT stimulated xylanase activity Mercury (II) ion at 5 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher xylooligo-saccharides, indicating that the enzyme was an endoxylanase.

Immune Activity of Lithospermum erythrorhizon Extracted by Extreme Low Temperature Extraction Process (극한 저온 추출 공정을 처리한 지치의 면역활성)

  • Seo, Yong Chang;Kim, Ji Seon;Kim, Young Ock;Kim, Jin Chul;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • This study was performed to investigate the enhancement of immunomodulatory activities of Lithospermum erythrorhizon by extreme process. The extracts are WE100 (water extract for 24 hours at $100^{\circ}C$), WE80 (water extract for 24 hours at $80^{\circ}C$), EE (70% ethyl alcohol extract for 24 hours at $80^{\circ}C$) and EPE (extreme process for 30 minutes at $25^{\circ}C$, 500 MPa after 70% ethyl alcohol extracts for 3 hours at 40, 50, $60^{\circ}C$). Extraction yield was increased up to 5~10% by extreme process, compare to the normal extraction such as water solvent extraction, 70% ethyl alcohol solvent extraction. The cytotoxicity of the extracts was showed in the range of 12.68~15.89% at $1.0mg/m{\ell}$ for human lung cell (HEL299). The EPE40 was showed the lowest cytotoxicity 12.68%. The EPE60 extracted by extreme process increased the growth of human B and T cells up to $12.12{\times}10^4\;cells/m{\ell}$ and $14.88{\times}10^4\;cells/m{\ell}$, respectively and the EPE60 greatly increased the cytokine secretion of both IL-6 and TNF-${\alpha}$. The extracts by extreme process also exhibited higher levels of nitric oxide production from macrophages than the lipopolysaccaharides. It can be concluded that Lithospermum erythrorhizon has immune activities and The extreme process could increase higher immune activities possibly by immunomodulatory compounds.

Effectiveness of Antagonistic Bacterial Metabolites to Control Rhizoctonia solani on Lettuces and Fusarium oxysporum on Tomatoes

  • Vu, Van Hanh;Thi, Quyen Dinh;Rita, Grosch;Dung, Nguyen Ngoc
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.70-78
    • /
    • 2013
  • Rhizoctonia solani and Fusarium oxysporum cause yield losses in numerous economically important crops. To develop a bio-control agent, cell free extracellular compounds (ECs) of 5 bacterial strains Burkholdria sp. L1, Pseudomonas sp. L4, Pseudomonas chlororaphis VN391, Bacillus subtilis VN21 and Enterobacter sp. VN99 from Vietnamese fields, which reduced levels of R. solani root rot in lettuces and F. oxysporum root rot in tomatoes, were investigated. In a growth chamber, ECs of all antagonists markedly enhanced the biomass of lettuces (10 to 14.1%) and tomatoes (11.38 to 13.88%). In greenhouses, the disease's severity on both crops treated with ECs of the antagonists was reduced significantly and biomass losses in the plants decreased markedly. The reduction level of R. solani root rot in lettuces was 75, 66.7, 50, and 16.7% by ECs of strains L1, L4, VN21 and VN391, respectively. The biomass of lettuces increased markedly by 29.13%, 21.67%, and 23.4% by ECs of strains L1, L4 and VN21, respectively. Similarly, the reduction levels of F. oxysporum root rot in tomatoes was 76.3, 75, 41.7 and 25% by ECs of strain L1, L4, VN21 and VN391, respectively, and the biomass was significantly enhanced by 14.42, 12.7 and 13%, respectively. The ECs of strain L1 exhibited the most effective bio-control agents to suppress R. solani and F. oxysporum.

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.