DOI QR코드

DOI QR Code

Effectiveness of Antagonistic Bacterial Metabolites to Control Rhizoctonia solani on Lettuces and Fusarium oxysporum on Tomatoes

  • Received : 2012.07.05
  • Accepted : 2013.01.03
  • Published : 2013.03.28

Abstract

Rhizoctonia solani and Fusarium oxysporum cause yield losses in numerous economically important crops. To develop a bio-control agent, cell free extracellular compounds (ECs) of 5 bacterial strains Burkholdria sp. L1, Pseudomonas sp. L4, Pseudomonas chlororaphis VN391, Bacillus subtilis VN21 and Enterobacter sp. VN99 from Vietnamese fields, which reduced levels of R. solani root rot in lettuces and F. oxysporum root rot in tomatoes, were investigated. In a growth chamber, ECs of all antagonists markedly enhanced the biomass of lettuces (10 to 14.1%) and tomatoes (11.38 to 13.88%). In greenhouses, the disease's severity on both crops treated with ECs of the antagonists was reduced significantly and biomass losses in the plants decreased markedly. The reduction level of R. solani root rot in lettuces was 75, 66.7, 50, and 16.7% by ECs of strains L1, L4, VN21 and VN391, respectively. The biomass of lettuces increased markedly by 29.13%, 21.67%, and 23.4% by ECs of strains L1, L4 and VN21, respectively. Similarly, the reduction levels of F. oxysporum root rot in tomatoes was 76.3, 75, 41.7 and 25% by ECs of strain L1, L4, VN21 and VN391, respectively, and the biomass was significantly enhanced by 14.42, 12.7 and 13%, respectively. The ECs of strain L1 exhibited the most effective bio-control agents to suppress R. solani and F. oxysporum.

Keywords

References

  1. Berg, G., A. Krechel, M. Ditz, R. Sikora, A. Ulrich, and J. Hallmann. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51: 215-229. https://doi.org/10.1016/j.femsec.2004.08.006
  2. Cartwright, D. K. and D. M. Benson. 1995. Comparison of Pseudomonas species and application techniques for biocontrol of Rhizoctonia stem rot of poinsettia. Plant. Dis. 79: 309-313. https://doi.org/10.1094/PD-79-0309
  3. Chernin, L., Z. Ismailov, S. Haran, and I. Chet. 1995. Chitinolytic enterobacter agglomerans antagonistic to fungal plant pathogens. Environ. Microbiol. Rep. 61: 1720-1726.
  4. DeLucca, A. J., T. J. Jacks, J. Takemoto, B. Vinyard, J. Peter, E. Navarro, and T. J. Walsh. 1999. Fungal lethality, binding, and cytotoxicity of syringomycin-E. Antimicrob. Agen. Chem. 43: 371-373.
  5. Duijff, B. J., G. Recorbet, P. A. H. Bakker, J. E. Loper, and P. Lemanceau. 1999. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology 89: 1073-1079. https://doi.org/10.1094/PHYTO.1999.89.11.1073
  6. Fiddaman, P. J., T. M. O'Neill, and D. S. Rossall. 2000. Screening of bacteria for the suppression of Botrytis cinerea and Rhizoctonia solani on lettuce (Lactuca sativa) using disc bioassays. Ann. Appl. Biol. 137: 223-235. https://doi.org/10.1111/j.1744-7348.2000.tb00063.x
  7. Grosch, R., J. Lottmann, F. Faltin, and G. Berg. 2005. Biologische kontrolle von Rhizoctonia solani. Ges. Pfl. 57.
  8. Gupta, C. P., R. C. Dubey, and S. C. Kang. 2001. Antibiosismediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Cur. Sci. 81: 91-94.
  9. Haas, D. and G. D'efago. 2005. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat. Rev. Microbiol. 3: 307-319. https://doi.org/10.1038/nrmicro1129
  10. Hammad, A. M. M. and M. A. O. Eimohandes. 1999. Controlling Fusarium wilt disease of cucumber plants via antagonistic microorganisms in free and immobilized states. Microbiol. Res. 154: 113-117. https://doi.org/10.1016/S0944-5013(99)80002-0
  11. Hervás, A., B. Landa, L. E. Datnoff, and R. M. Jiménez-Díaz. 1998. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biol. Control 13: 166-176. https://doi.org/10.1006/bcon.1998.0659
  12. Hill, D. S., J. I. Stein, N. R. Torkewitz, A. M. Morse, C. R. Howell, J. P. Pachlatko, J. O. Becker, and J. M. Ligon. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from P. fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60: 78-85.
  13. Jayaswal, R. K., M. Fernandez, R. S. Upadhyay, L. Visintin, M. Kurz, J. Webb, and K. Rinehart. 1993. Antagonism of P. cepacia against phytopathogenic fungi. Curr. Microbiol. 26: 17-22. https://doi.org/10.1007/BF01577237
  14. Landa, B. B., A. Hervas, W. Bethiol, and R. M. Jimenez-Diaz. 1997. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f.sp.ciceris. Phytoparasitica 25: 305-318. https://doi.org/10.1007/BF02981094
  15. Landy, M., G. H. Warren, S. B. Rosenman, and L. G. Clolis. 1948. Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc. Soc. Exper. Biol. 67 539-541. https://doi.org/10.3181/00379727-67-16367
  16. Loefler, W., J. S. -M. Tschen, N. Vanittankom, M. Kugler, E. Knorpp, T. -F. Hsieh, and T. G. Wu. 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F-29-3 a comparison with activities of other Bacillus antibiotics. J. Phytopathol. 115: 204-213. https://doi.org/10.1111/j.1439-0434.1986.tb00878.x
  17. Mazzola, M., R. J. Cook, L. S. Thomashow, D. M. Weller, and L. S. Pierson. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent Pseudomonads in soil habitats. Appl. Environ. Microbiol. 58: 2616-2624.
  18. Nel, B., C. Steinberg, N. Labuschagne, and A. Viljoen. 2006. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing fusarium wilt of banana. Plant Pathol. 55: 217-223. https://doi.org/10.1111/j.1365-3059.2006.01344.x
  19. Nourozian, J., H. R. Etebarian, and G. Khodakaramian. 2006. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J. Sci. Technol. 28: 29-38.
  20. Parker, W. L., M. L. Rathnum, and V. Seiner. 1984. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J. Antibiot. 37: 431-440. https://doi.org/10.7164/antibiotics.37.431
  21. Paulitz, T. C., T. Zhou, and L. Rankin. 1992. Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biol. Control 2: 226-237. https://doi.org/10.1016/1049-9644(92)90063-J
  22. Schneider, J. H. M., M. T. Schilder, and G. Dijst. 1997. Characterization of Rhizoctonia solani AG-2 isolates causing bare patch in field-grown tulips in the Netherlands. Eur. J. Plant Pathol. 103: 265-279. https://doi.org/10.1023/A:1008643311984
  23. Shanahan, P. O., D. J. Sullivan, P. Simpson, J. D. Gleonnon, and O'Gara. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigations of physiological parameters influencing its production. Appl. Environ. Mirobiol. 58: 353-358.
  24. Sivamani, E. and S. S. Gnanamanickam. 1988. Biological control of Fusarium oxysporum f.sp. cubense in banana by inoculation with Pseudomonas fluorescens. Plant Soil 107: 3-9. https://doi.org/10.1007/BF02371537
  25. Thomashow, L. S. and D. M. Weller. 1988. Role of a phenazine antibiotic from P. fluorescens 2-97 in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170: 3499- 3408.

Cited by

  1. Chryseobacterium panacis sp. nov., isolated from ginseng soil vol.109, pp.2, 2013, https://doi.org/10.1007/s10482-015-0620-2
  2. Flavobacterium panacis sp. nov., isolated from rhizosphere of Panax ginseng vol.109, pp.9, 2013, https://doi.org/10.1007/s10482-016-0720-7