DOI QR코드

DOI QR Code

Optimization of Xylanase Production from Paenibacillus sp. DG-22

Paenibacillus sp. DG-22로부터 xylanase 생산의 최적화

  • Lee, Yong-Eok (Department of Biotechnology, Dongguk University)
  • Published : 2003.10.01

Abstract

Investigations were carried out to optimize the culture conditions for the production of xylanase by Paenibacillus sp. DG-22, a moderately thermophilic bacterium isolated from timber yard soil. Xylanase production showed a cell growth associated profile. Xylanase activity was found only in the culture supernatant, while $\beta-xylosidase$ activity was mainly associated with the cells. The formation of xylanase activity was induced by xylan and repressed by glucose and xylose. The production profile of xylanase was examined with various commercial xylan and maximum yield was achieved with 0.1∼ 0.5% birchwood xylan. Among various nitrogen sources tested, yeast extract was optimal for the production of xylanase. The xylanase activity was inhibited by $Co^{2+},\; Cu^{2+},\; Fe^{3+},\; Hg^{2+}\;$ and$\;Mn^{2+}$ ions while $Ca^{2+},\; Mg^{2+},\; Ni^{2+},\; Zn^{2+}$ions and DTT stimulated xylanase activity Mercury (II) ion at 5 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher xylooligo-saccharides, indicating that the enzyme was an endoxylanase.

목재 저장소의 토양에서 분리된 호열성 세균인 Paenibacillus sp. DG-22로부터 xylanase를 생산하기 위한 배양조건을 최적화시키기 위해 연구를 수행하였다. Xylanase생산은 세포의 생장과 연관된 양상을 나타내었다. Xylanase 활성은 배양상청액에서만 발견된 반면 $\beta-xylosidase$활성은 주로 세포와 결합되어 있었다. Xylanase활성의 형성은 자일란에 의해 유도되었고 포도당과 자일로스에 의해서 억제되었다. 여러 상업적 자일란을 이용하여 xylanase의 생산양상을 조사한 결과 0.1-0.5%의 birchwood xylan에서 가장 높은 생산율을 나타내었다. 조사된 여러 질소 원들 중 효모추출물이 xylanase생산을 위하여 최적이었다. xylanase의 활성은 $Co^{2+},\; Cu^{2+},\; Fe^{3+},\; Hg^{2+}\;$$\; Mn^{2+}$ 이온들에 의하여 억제된 반면 $Ca^{2+},\; Mg^{2+},\; Ni^{2+},\; Zn^{2+}$ 이온들과 DTT에 의해서는 촉진되었다. 수은은 5 mM의 농도에서 xylanase 활성을 완전히 파괴하였다. 자일란 가수분해의 주된 산물은 자일로바이오스, 자일로트라이오스 그리고 자일로 올리고당이었고 이것은 이 효소가 endoxylanase라는 것을 나타낸다.

Keywords

References

  1. J. Biotechnol. v.23 Inter-laboratory testing of methods for assay of xylanase activity Bailey,M.J.;P.Biely;K.Poutanen https://doi.org/10.1016/0168-1656(92)90074-J
  2. Enzyme Microb. Technol. v.26 Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0 Bataillon,M.;A.P.Nunes Cardinali;N.Castillon;F.Duchiron https://doi.org/10.1016/S0141-0229(99)00143-X
  3. Appl. Microbiol. Biotechnol. v.56 Microbial xylanases and their industrial applications: a review Beg,Q.K.;M.Kapoor;L.Mahajan;G.S.Hoondal https://doi.org/10.1007/s002530100704
  4. Trends Biotechnol. v.3 Microbial xylanolytic systems Biely,P. https://doi.org/10.1016/0167-7799(85)90004-6
  5. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford,M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Appl. Biochem. Biotechnol. v.90 Thermozymes and their applications Bruins,M.E.;A.E.M.Janssen;R.M.Boom https://doi.org/10.1385/ABAB:90:2:155
  7. Biotechnol. Appl. Biochem. v.17 β-1,4-D-xylan-degrading enzyme systems: Biochemistry, molecular biology, and applications Coughlan,M.P.;G.P.Hazelwood
  8. Adv. Carbohydr. Chem. Biochem. v.32 Hemi-cellulase: their occurrence, purification, properties, and mode of action Dekker,R.F.H.;G.N.Richards https://doi.org/10.1016/S0065-2318(08)60339-X
  9. FEMS Mi-crobiol. Lett. v.17 Some aspects of a 1,4-β -D-xylanase and β-D-xylosidase secreted by Bacillus coagulans strain 26 Esteban,R.;A.Chordi;T.G.Villa
  10. FEMS Microbiol. Rev. v.23 Molecular and biotechnological aspects of xylanases Kulkarni,N.;A.Shendye;M.Rao https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  11. Manuscript in preparation Characterization of thermostable xyl-anases from the newly isolated paenibacillus sp. strain DG-22 Lee,Y.E.
  12. Appl. Environ. Microbiol. v.59 Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI Lee,Y.E.;S.E.Lowe;J.G.Zeikus
  13. Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugars Miller,G.L. https://doi.org/10.1021/ac60147a030
  14. World J. Microbiol. Biotechnol. v.9 Production of alkaline xyl-anase by a newly isolated alkalohilic Bacillus sp. strain 41M-1 Nakamura,S.;K.Wakabayashi;R.Nokai;R.Aono;K.Horikoshi https://doi.org/10.1007/BF00327842
  15. J. Mol. Catalysis B: Enzymatic v.1 Purification and characterization of a thermophilic alkaline xylanase from thermoalkaliphilic Bacillus sp. strain TAR-1 Nakamura,S.;Y.Ishiguro;R.Nakai;K.Wakabayashi;R.Aono;K.Horikoshi https://doi.org/10.1016/1381-1177(95)00003-8
  16. Ind. Crop. Products v.7 Production of xylanases by Bacillus polymyxa using lignocellulosic wastes Pham,P.L.;P.Taillandier;M.Delmas;P.Streehaiano https://doi.org/10.1016/S0926-6690(97)00048-4
  17. J. Chem. Tech. Bio-technol. v.57 Xylanase production by Bacillus polymyxa Pinaga,F.;J.L.Pena;S.Valles
  18. Appl. Microbiol. Biotechnol. v.37 Production of xylanolytic enzymes by an alkalitolerant Bacillus circulans strain Ratto,M.;K.Poutanen;L.Viikari
  19. Molecular Cloning: A laboratory manual(2nd ed.) Sambrook,J.;E.F.Fritsch;T.Maniatis
  20. Biotechnol. Lett. v.15 Charac-terization of a bacterial xylanase resistant to repression by glucose and xylose Srivastava,R.;A.K.Srivastava
  21. Crit. Rev. Biotechnol. v.22 Biotechnology of microbial xylanases: enzymology, molecular biology, and application Subramaniyan,S.;P.Prema https://doi.org/10.1080/07388550290789450
  22. FEMS Microbiol. Lett. v.148 Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A Sunna,A.;S.G.Prowe;T.Stoffregen;G.Antranikian https://doi.org/10.1111/j.1574-6968.1997.tb10290.x
  23. FEMS Microbiol. Rev. v.13 Xylanases in bleaching; from an idea to the industry Viikari,L.;A.Kantelinen;J.Sundquist;M.Linko https://doi.org/10.1111/j.1574-6976.1994.tb00053.x
  24. Microbiol. Rev. v.52 Multiplicity of β-1,4-sylanase in microorganisms: function and applications Wong,K.K.Y.;L.U.L.Tan;J.N.Saddler
  25. J. Ind. Mircrobiol. v.8 Thermostable enzymes for industrial applications Zamost,B.L.;H.K.Nielson;R.L.Starnes https://doi.org/10.1007/BF01578757