• 제목/요약/키워드: cathode reaction

검색결과 408건 처리시간 0.033초

Analysis on the Electrode Kinetic Parameters at the Pd/LiOH Electrolyte Interface using the Phase-shift Method (위상이동 방법에 의한 Pd/LiOH 전해질 계면의 전극속도론적 패러미터 해설)

  • Chun Jang Ho;Mun Kyeong Hyeon;Cho Sung Chil;Son Kwang Chul
    • Journal of the Korean Electrochemical Society
    • /
    • 제2권2호
    • /
    • pp.70-74
    • /
    • 1999
  • The electrode kinetic parameters at the Pd/0.5 M LiOH electrolyte interface have been qualitatively studied using the phase-shift method. The phase shift $(\phi)$ depends on both the cathode potential (E>0) and frequency (f), and $\theta$ is inversely proportional to the fractional surface coverage $\theta$. At an intermediate frequency (10 Hz), the phase-shift profile $(\phi\;vs.\;E)$ can be related to the fractional surface coverage $(\theta\;vs.\;E)$. The phase-shift method can be used to estimate or plot the Frumkin adsorption isotherm. The rate (r) of change of the free energy of adsorption with $({\theta})$ is 22.3 kJ/mol. The equilibrium constant (K) for adsorption and the standard free energy $({\Delta}G_{\theta})$ of the adsorbed hydrogen atom $(H_{ads})$ are $3.7\times10^{-3}{\Delta}G_{\theta}>-8.4kJ/mol$, respectively. For 1$0.38>\theta>0$, the energy liberation or the exothermic reaction for hydrogen adsorption at the Pd cathode can be occurred. The electrode kinetic parameters $(r,\;K,\;{\Delta}G_{\theta}$ depend on the fractional surface coverage $({\theta})$ or the phase shift $(\phi)$.

Development of Visible-light Responsive $TiO_2$ Thin Film Photocatalysts by Magnetron Sputtering Method and Their Applications as Green Chemistry Materials

  • Matsuoka, Masaya
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.3.1-3.1
    • /
    • 2010
  • Water splitting reaction using photocatalysts is of great interest in the utilization of solar energy [1]. In the present work, visible light-responsive $TiO_2$ thin films (Vis-$TiO_2$) were prepared by a radio frequency magnetron sputtering (RF-MS) deposition method and applied for the separate evolution of $H_2$ and $O_2$ from water as well as the photofuel cell. Special attentions will be focused on the effect of HF treatment of Vis-$TiO_2$ thin films on their photocatalytic activities. Vis-$TiO_2$ thin films were prepared by an RF-MS method using a calcined $TiO_2$ plate and Ar as the sputtering gas. The Vis-$TiO_2$ thin films were then deposited on the Ti foil substrate with the substrate temperature at 873 K (Vis-$TiO_2$/Ti). Vis-$TiO_2$/Ti thin films were immersed in a 0.045 vol% HF solution at room temperature. The effect of HF treatments on the activity of Vis-$TiO_2$/Ti thin films for the photocatalytic water splitting reaction have been investigated. Vis-$TiO_2$/Ti thin films treated with HF solution (HF-Vis-$TiO_2$/Ti) exhibited remarkable enhancement in the photocatalytic activity for $H_2$ evolution from a methanol aqueous solution as well as in the photoelectrochemical performance under visible light irradiation as compared with the untreated Vis-$TiO_2$/Ti thin films. Moreover, Pt-loaded HF-Vis-$TiO_2$/Ti thin films act as efficient and stable photocatalysts for the separate evolution of $H_2$ and $O_2$ from water under visible light irradiation in the presence of chemical bias. Thus, HF treatment was found to be an effective way to improve the photocatalytic activity of Vis-$TiO_2$/Ti thin films. Furthermore, unique separate type photofuel cell was fabricated using a Vis-$TiO_2$ thin film as an electrode, which can generate electrical power under solar light irradiation by using various kinds of biomass derivatives as fuel. It was found that the introduction of an iodine ($I^-/{I_3}^-$) redox solution at the cathode side enables the development of a highly efficient photofuel cell which can utilize a cost-efficient carbon electrode as an alternative to the Pt cathode.

  • PDF

Chemical Prelithiation Toward Lithium-ion Batteries with Higher Energy Density (리튬이온전지 고에너지밀도 구현을 위한 화학적 사전리튬화 기술)

  • Hong, Jihyun
    • Journal of the Korean Electrochemical Society
    • /
    • 제24권4호
    • /
    • pp.77-92
    • /
    • 2021
  • The energy density of lithium-ion batteries (LIBs) determines the mileage of electric vehicles. For increasing the energy density of LIBs, it is necessary to develop high-capacity active materials that can store more lithium ions within constrained weight. The rapid progress made in cathode technology has realized the utilization of the near-theoretical capacity of cathode materials. In contrast, commercial LIBs have still exploited graphite as active material in anodes since the 1990s. The most promising way to increase anodes' capacity is to mix high-capacity and long-cycle-life silicon oxides (SiOx) with graphite. However, the low initial Coulombic efficiency (ICE) of SiOx limits its content below 15 wt%, impeding the capacity increase in anodes. To address this issue, various prelithiation techniques have been proposed, which can improve the ICE of high-capacity anode materials. In this review paper, we introduce the principles and expected effects of prelithiation techniques reported so far. According to the reaction mechanisms, the strategies are categorized. Mainly, we focus on the recent progress of solution-based chemical prelithiation methods with commercial viability, of which lithiation reaction occurs homogeneously at liquid-solid interfaces. We believe that developing a cost-effective and mass-scalable prelithiation process holds the key to dominating the anode market for next-generation LIBs.

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제38권5호
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • 제10권4호
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Optimization for Removal of Nitrogen Using Non-consumable Anode Electrodes (비소모성 Anode(산화전극)을 이용한 질소 제거 최적화)

  • Hyunsang, Kim;Younghee, Kim
    • Clean Technology
    • /
    • 제28권4호
    • /
    • pp.309-315
    • /
    • 2022
  • Research was conducted to derive the optimal operation conditions and the optimal cathode for using a DSA electrode as an anode to minimize electrode consumption during the removal of nitrogen from wastewater by the electro-chemical method. Of the various electrodes tested as cathodes, brass was determined to be the optimal electrode. It had the highest NO3-N removal rate and the lowest concentration of residual NH3-N, a by-product when Cl is present in the solution. Investigating the effect of current density found that when the initial concentration of NO3-N was 50 mg L-1, the optimal current density was 15 mA cm-2. In addition, current densities above 15 mA cm-2 did not significantly affect the NO3-N removal rate. The effect of electrolytes on removing NO3-N and minimizing NH3-N was investigated by using Na2SO4 and NaCl as electrolytes and varying the reaction times. When Na2SO4 and NaCl are mixed at a ratio of 1.0 g L-1 to 0.5 g L-1 and reacted for 90 min at a current density of 15 mA cm-2 and an initial NO3-N concentration of 50 mg L-1, the removal rate of NO3-N was about 48% and there was no residual NH3-N. On the other hand, when using only 1.5 g L-1 of NaCl as an electrolyte, the removal rate of NO3-N was the highest at about 55% and there was no residual NH3-N.

Effect of operating temperature using Ni-Al-$ZrH_2$ anode in molten carbonate fuel cell (Ni-Al-$ZrH_2$ 연료극을 사용한 용융탄산염 연료전지의 온도의 영향)

  • Seo, Dongho;Jang, Seongcheol;Yoon, Sungpil;Nam, Suk Woo;Oh, In-Hwan;Lim, Tae-Hoon;Hong, Seong-Ahn;Han, Jonghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2010
  • Fuel cell is a device that directly converts chemical energy in the form of a fuel into electrical energy by way of an electrochemical reaction. In the anode for a high temperature fuel cell, nickel or nickel alloy has been used in consideration of the cost, oxidation catalystic ability of hydrogen which is used as fuel, electron conductivity, and high temperature stability in reducing atmosphere. Most MCFC stacks currently operate at an average temperature of $650^{\circ}C$. There is some gains with decreased temperature in MCFC to diminish the electrolyte loss from evaporation and the material corrosion, which could improve the MCFC life. However, operating temperature has a strong related on a number of electrode reaction rates and ohmic losses. Baker et al. reported the effect of temperature (575 to $650^{\circ}C$). The rates of cell voltage loss were 1.4mV/$^{\circ}C$ for a reduction in temperature from 650 to $600^{\circ}C$, and 2.16mV/$^{\circ}C$ for a decrease from 600 to $575^{\circ}C$. The two major contributors responsible for the change in cell voltage with reducing operation temperature are the ohmic polarization and electrode polarization. It appears that in the temperature range of 550 to $650^{\circ}C$, about 1/3 of the total change in cell voltage with decreasing temperature is due to an increase in ohmic polarization, and the electrode polarization at the anode and cathode. In addition, the oxidation reaction of hydrogen on an ordinary nickel alloy anode in MCFC is generally considered to take place in the three phase zone, but anyway the area contributing to this reaction is limited. Therefore, in order to maintain a high performance of the fuel cell, it is necessary to keep this reaction responsible area as wide as possible, that is, it is needed to keep the porosity and specific surface area of the anode at a high level. In this study effective anodes are prepared for low temperature MCFC capable of enhancing the cell performance by using zirconium hydride at least in part of anode material.

  • PDF

Research on the Gas Diffusion Electrode for the Brine Electrolysis (염수 전해용 가스확산 전극에 관한 연구)

  • Lee, D.H.;Lee, G.H.;Han, J.W.;Lim, J.T.;Lee, O.S.;Lee, J.D.
    • Journal of the Korean Electrochemical Society
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2002
  • The gas diffusion electrodes as oxygen cathodes f3r the brine electrolysis process were investigated. The gas diffusion electrode consists of a reaction layer, a gas diffusion layer, and a current distributor. The reaction layer was made from hydrophilic carbon black, hydrophobic carbon black, PTFE(polyterafluoroethylene), and Ag catalyst loaded by the silver mirror reaction or impregnation method. The gas diffusion layer was made from hydrophobic carbon black and PTFE, and Ni mesh was used as the current distributor in the reaction layer. The result that the gas diffusion electrode $(10wt\%\;Ag\;catalyst\;and\;20wt\%\;binder)$ manufactured by applying impregnation method to the carbon black f3r reaction layer showed the better performance was obtained from experiments. From the half-cell test, the measured overpotential of this oxygen cathode was about 700mV, And through the electrolysis experiment under the condition of $80^{\circ}C,\;32wt\%$ NaOH, and $300mA/cm^2$, the electrolysis voltage of this electrode was about 2.2 V, The gas diffusion electrodes manufactured in the present research were capable of continuous operations for three months.

A Study on the Treatment of Soil Flushing Effluent Using Electrofloatation : Effects of Electrolyte and pH (전기부상을 이용한 토양세정 유출수 처리에 관한 연구 : 전해질 및 pH의 영향)

  • 소정현;최상일;조장환
    • Journal of Soil and Groundwater Environment
    • /
    • 제8권3호
    • /
    • pp.56-60
    • /
    • 2003
  • The optimal operation conditions of electrofloatation for oil-water separation of soil flushing effluent including electrolyte and pH were investigated. The reactor (200 ${\times}$ 10 ${\times}$ 15 cm) for the experiment was constructed by using acrylic plate. Diesel concentration was 1,000 mg/L in the 1 % mixed surfactant solution ($POE_5$: $POE_{14}$ 1: 1). Titanium coated electrode was used as cathode and stainless steel electrode as anode. Reaction time was 62 minutes (reaction time: 60 min., flotation time: 2 min.) and voltage was 6 V. The separation efficiency of electrofloatation was improved to 40% by electrolyte addition. Furthermore, NaCl (1N) added as electrolyte was showed enhanced efficiency compared to NaOH (1N). While, the effect of both NaCl and NaOH was sequentially increased in the range of 0.2∼1.0% (0.02∼0.1 M). The equilibrium time was found as 20 min. in the range of 0.4∼1.0% (0.04∼0.1M) for both of them.

Synthesis and Electrochemical Characteristics of Carbon added Li3V2(PO4)3 (탄소첨가한 Li3V2(PO4)3의 합성 및 전기화학적 특성)

  • Jo, Yeong-Im;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • 제15권2호
    • /
    • pp.101-108
    • /
    • 2012
  • The purpose of this study was to improve the conductivity of $Li_3V_2(PO_4){_3}$ by adding carbon source so that the discharge rate and cyclic properties were improved. Glucose and CNT were added to $Li_3V_2(PO_4){_3}$ and the structure and electrochemical properties were studied. $Li_3V_2(PO_4){_3}$, $Li_3V_2(PO_4){_3}$/C and $Li_3V_2(PO_4){_3}$/CNT were synthesised by solid state reaction using hydrogen reduction method at 600, 700, 800, $900^{\circ}C$. The cathode materials were assembled to coin cell type 2032 with Lithium metal as a counter electrode. The coin cell was galvanostatically evaluated in the voltage range of 3.0~4.8 V.