DOI QR코드

DOI QR Code

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach

연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구

  • Kang, Seok Ho (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Chang-Mi (Department of Environmental Engineering, Chungbuk National University) ;
  • Lim, Dong-Hee (Department of Environmental Engineering, Chungbuk National University)
  • 강석호 (충북대학교 환경공학과) ;
  • 이창미 (충북대학교 환경공학과) ;
  • 임동희 (충북대학교 환경공학과)
  • Received : 2016.01.26
  • Accepted : 2016.04.04
  • Published : 2016.05.31

Abstract

The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.

연료전지에서의 전체 반응 속도는 산화전극에서 일어나는 수소산화반응에 비해 그 반응 속도가 현저히 느린 환원전극에서의 산소환원반응(oxygen reduction reaction, ORR)에 의해 결정된다. ORR 효율성 평가를 용이하게 하는 지표(descriptor)로서 촉매 표면에서의 산소원자 흡착강도를 활용하는데, 산소흡착강도는 촉매 표면의 기하학적 구조 변형에 따른 전자구조를 변형함으로써 조절할 수 있다. 이에 본 연구에서는 백금 표면의 원자모델을 이용하여 표면의 기하학적 구조가 산소흡착강도에 미치는 영향과 그 원인을 밀도범함수이론(density functional theory, DFT) 계산을 통해 분석하였다. 먼저, 기하학적 구조를 인위적으로 변형시킨 Pt(111) 표면에서의 산소흡착반응을 밀도범함수이론 계산을 이용해 분석함으로써 기하학적 구조변화가 산소흡착강도에 미치는 영향(strain effect)을 확인하였다. 최적화한 Pt 격자상수($3.977{\AA}$)에 ${\pm}1%$ 간격의 변화율을 적용하고 각 변화율마다의 산소흡착강도를 계산하였는데, Pt-Pt 원자 간 거리가 멀어질수록 산소흡착강도가 강해지는 것을 확인하였다. 이는 원자 간 거리가 증가할수록 d-band center가 페르미 준위(Fermi level)쪽으로 이동하게 되며, 이로써 일부 반결합 오비탈(anti-bonding orbitals)에 전자가 채워지지 않기 때문에 전체적으로 반결합 오비탈이 형성될 가능성이 적어지기 때문이다. 결과적으로, 순수한 백금이 가진 격자상수($3.9771{\AA}$) 보다 약 2~4% 작은 백금 표면 격자크기를 가질 수 있도록 유도할 수 있다면 산소흡착강도가 적절히 약하게 조절될 수 있으며, 이는 순수한 백금보다 더 향상된 ORR 성능을 가진 촉매물질 개발 연구를 위한 기초자료로서 활용할 수 있을 것이다.

Keywords

References

  1. Ahn, B. M., "OECD Factbook 2014," Korea Institute of S&T Evaluation and Planning(2014).
  2. Srinivasan, S., Mosdale, R., Stevens, P. and Yang, C., "Fuel cells: Reaching the era of clean and efficient power generation in the twenty-first century," Annu. Rev. Environ. Resour., 24, 281-328(1999).
  3. Ohayre, R. P., Cha, S. W., Colella, W. and Prinz, F. B., "Fuel Cell Fundamentals," John Wiley & Sons (Korean: Hanteemedia)(2008).
  4. Behling, N. H., "Fuel Cells: Current Technology Challenges and Future Research Needs," Elsevier(2013).
  5. He, C., Desai, S., Brown, G. and Bollepalli, S., "PEM Fuel Cell Catalysts: Cost, Performance, and Durability," Electrochem. Soc. Interface, Fall(2005).
  6. Gasteiger, H. A., Kocha, S. S., Sompalli, B. and Wagner, F. T., "Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs," Appl. Catal. B, 56(1-2), 9-35(2005). https://doi.org/10.1016/j.apcatb.2004.06.021
  7. Greeley, J., Stephens, I. E. L., Bondarenko, A. S., Johansson, T. P., Hansen, H. A., Jaramillo, T. F., Rossmeisl, J., Chorkendorff, I. and Norskov, J. K., "Alloys of platinum and early transition metals as oxygen reduction electrocatalysts," Nat. Chem., 1(7), 552-556(2009). https://doi.org/10.1038/nchem.367
  8. Norskov, J. K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J. R., Bligaard, T. and Jonsson, H., "Origin of the overpotential for oxygen reduction at a fuel-cell cathode," J. Phys. Chem. B, 108(46), 17886-17892(2004). https://doi.org/10.1021/jp047349j
  9. Ramaker, D. E., Korovina, A., Croze, V., Melke, J. and Roth, C., "Following ORR intermediates adsorbed on a Pt cathode catalyst during break-in of a PEM fuel cell by in operando X-ray absorption spectroscopy," Phys. Chem. Chem. Phys., 16(27), 13645-13653(2014). https://doi.org/10.1039/c4cp00192c
  10. Stamenkovic, V., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N., Markovic, N. M., Rossmeisl, J., Greeley, J. and Norskov, J. K., "Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure," Angew. Chem. Int. Ed., 45(18), 2897-2901(2006). https://doi.org/10.1002/anie.200504386
  11. Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J. J., Lucas, C. A., Wang, G., Ross, P. N. and Markovic, N. M., "Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces," Nat. Mater., 6(3), 241-247(2007). https://doi.org/10.1038/nmat1840
  12. Kohn, W. and Sham, L. J., "Self-Consistent Equations Including Exchange and Correlation Effects," Phys. Rev., 140 (4A), A1133-A1138(1965). https://doi.org/10.1103/PhysRev.140.A1133
  13. Kresse, G. and Hafner, J., "Ab initio molecular dynamics for liquid metals," Phys. Rev. B, 47(1), 558-561(1993). https://doi.org/10.1103/PhysRevB.47.558
  14. Kresse, G. and Hafner, J., "Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium," Phys. Rev. B, 49(20), 14251-14269(1994). https://doi.org/10.1103/PhysRevB.49.14251
  15. Kresse, G. and Furthmuller, J., "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set," Phys. Rev. B, 54(16), 11169-11186(1996). https://doi.org/10.1103/PhysRevB.54.11169
  16. Kresse, G. and Furthmuller, J., "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set," Comput. Mater. Sci., 6(1), 15-50(1996). https://doi.org/10.1016/0927-0256(96)00008-0
  17. Blochl, P. E., "Projector augmented-wave method," Phys. Rev. B, 50(24), 17953-17979(1994). https://doi.org/10.1103/PhysRevB.50.17953
  18. Kresse, G. and Joubert, D., "From ultrasoft pseudopotentials to the projector augmented-wave method," Phys. Rev. B, 59 (3), 1758-1775(1999).
  19. Perdew, J. P., Burke, K. and Ernzerhof, M., "Generalized gradient approximation made simple," Phys. Rev. Lett., 77 (18), 3865-3868(1996). https://doi.org/10.1103/PhysRevLett.77.3865
  20. Monkhorst, H. J. and Pack, J. D., "Special points for Brillouinzone integrations," Phys. Rev. B, 13(12), 5188-5192(1976). https://doi.org/10.1103/PhysRevB.13.5188
  21. Callister, W. D. and Rethwisch, D. G., "Materials Science and Engineering: An Introduction, 9th Edition," Wiley(2014).
  22. Michaelides, A. and Hu, P., "Hydrogenation of S to H2S on Pt(111): A first-principles study," J. Chem. Phys, 115(18), 8570-8574(2001). https://doi.org/10.1063/1.1410390
  23. Qi, L., Yu, J. and Li, J., "Coverage dependence and hydroperoxyl-mediated pathway of catalytic water formation on Pt (111) surface," J. Chem. Phys, 125(5), 054701(2006). https://doi.org/10.1063/1.2227388

Cited by

  1. Oxidation Characteristic and Activity Evaluation of Anode Off Gas (AOG) by Pd-Pt Catalyst vol.40, pp.11, 2018, https://doi.org/10.4491/KSEE.2018.40.11.421