DOI QR코드

DOI QR Code

Optimization for Removal of Nitrogen Using Non-consumable Anode Electrodes

비소모성 Anode(산화전극)을 이용한 질소 제거 최적화

  • Hyunsang, Kim (Department of Convergence Engineering, Graduate School of Venture, Hoseo University) ;
  • Younghee, Kim (Department of Convergence Engineering, Graduate School of Venture, Hoseo University)
  • 김현상 (호서대학교 벤처대학원 융합공학과) ;
  • 김영희 (호서대학교 벤처대학원 융합공학과)
  • Received : 2022.07.06
  • Accepted : 2022.09.05
  • Published : 2022.12.30

Abstract

Research was conducted to derive the optimal operation conditions and the optimal cathode for using a DSA electrode as an anode to minimize electrode consumption during the removal of nitrogen from wastewater by the electro-chemical method. Of the various electrodes tested as cathodes, brass was determined to be the optimal electrode. It had the highest NO3-N removal rate and the lowest concentration of residual NH3-N, a by-product when Cl is present in the solution. Investigating the effect of current density found that when the initial concentration of NO3-N was 50 mg L-1, the optimal current density was 15 mA cm-2. In addition, current densities above 15 mA cm-2 did not significantly affect the NO3-N removal rate. The effect of electrolytes on removing NO3-N and minimizing NH3-N was investigated by using Na2SO4 and NaCl as electrolytes and varying the reaction times. When Na2SO4 and NaCl are mixed at a ratio of 1.0 g L-1 to 0.5 g L-1 and reacted for 90 min at a current density of 15 mA cm-2 and an initial NO3-N concentration of 50 mg L-1, the removal rate of NO3-N was about 48% and there was no residual NH3-N. On the other hand, when using only 1.5 g L-1 of NaCl as an electrolyte, the removal rate of NO3-N was the highest at about 55% and there was no residual NH3-N.

폐수 중 질소를 제거하기 위한 전기화학적 방법 중 전극의 소모를 최소화하기 위하여 비용해성 전극인 DSA 전극을 anode(산화전극)로 사용하면서, 최적 cathode(환원전극) 도출 및 운전조건 최적화를 위한 연구를 수행하였다. 다양한 전극을 cathode(환원전극)로 사용하여 실험한 결과, 용액 중 Cl 존재시 질산성 질소(NO3-N)의 제거율이 가장 높으면서 부산물인 암모니아성 질소(NH3-N) 농도가 가장 낮게 나타난 Brass(황동)가 최적 전극으로 선정되었다. 전류밀도에 따른 영향을 조사하였을 때, 초기 질산성 질소의 농도가 50 mg L-1의 조건에서, 최적 전류밀도는 15 mA cm-2이었고, 그 이상의 전류밀도는 제거율에 큰 영향을 주지 못하였다. 전해물질(Na2SO4와 NaCl) 및 반응시간에 따른 질산성 질소(NO3-N) 제거 및 암모니아성 질소(NH3-N) 잔류량을 조사하였을 때, 질산성 질소(NO3-N)의 초기 농도 50 mg L-1, 전류밀도 15 mA cm-2의 조건에서 90분 반응 시 Na2SO4과 NaCl을 각각 1.0 g L-1, 0.5 g L-1 혼합하였을 때, 질산성 질소의 제거율은 약 48%였고 암모니아성 질소는 잔류하지 않았다. 전해물질로 NaCl만 1.5 g L-1를 사용하였을 때, 질산성 질소(NO3-N)의 제거율은 약 55%로 가장 높았고, 암모니아 질소도 잔류하지 않았다.

Keywords

References

  1. Nolan, B. T., Ruddy, B. C., Hitt, K. J., and Helsel, D. R., "Risk of Nitrate in groundwaters of the United States a national perspective," Environ. Sci. Technol., 31(8), 2229-2236 (1997). https://doi.org/10.1021/es960818d
  2. Smil, V., "Global population and the nitrogen cycle," Sci. Am., 277(1), 76-81 (1997). https://doi.org/10.1038/scientificamerican0797-76
  3. Moorcroft, M. J., Davis, J., and Compton, R. G., "Detection and determination of nitrate and nitrite: a review," Talanta, 54(5), 785-803 (2001). https://doi.org/10.1016/S0039-9140(01)00323-X
  4. Tugaoen, H. O. N., Garcia-Segura, S., Hristovski, K., and Westerhoff, P., " Challenges in photocatalytic reduction of nitrate as a water treatment technology," Sci. Total Environ., 599, 1524-1551 (2017). https://doi.org/10.1016/j.scitotenv.2017.04.238
  5. Fernandez-Nava, Y., Maranon, E., Soons, J., and Castrillon, L., "Denitrification of wastewater containing high nitrate and calcium concentrations," Bioresour. Technol., 99(17), 7976-7981 (2008). https://doi.org/10.1016/j.biortech.2008.03.048
  6. Martinez, J., Ortiz, A., and Ortiz, I., "State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates," Appl. Catal. B: Environ., 207, 42-59 (2017). https://doi.org/10.1016/j.apcatb.2017.02.016
  7. WHO, Nitrate and Nitrite in Drinking-Water, (2016).
  8. USEPA, Ground Water and Drinking Water Table of Regulated Drinking Water Contaminants, (2017).
  9. Lacasa, E., Llanos, J., Canizares, P., and Rodrigo, M. A., "Electrochemical denitrificacion with chlorides using DSA and BDD anodes," Chem. Eng. J., 184, 66-71 (2012). https://doi.org/10.1016/j.cej.2011.12.090
  10. Kalaruban, M., Loganathan, P., Shim, W. G., Kandasamy, J., Naidu, G., Nguyen, T. V., and Vigneswaran, S., "Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies," Sep. Purif. Technol., 158, 62-70 (2016). https://doi.org/10.1016/j.seppur.2015.12.022
  11. Fox, S., Bruner, T., Oren, Y., Gilron, J., and Ronen, Z., "Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor," Biotechnol. Bioeng., 113(9), 1881-1891 (2016). https://doi.org/10.1002/bit.25960
  12. Samatya, S., Kabay, N., Yuksel, U., Arda, M., and Yuksel, M., "Removal of nitrate from aqueous solution by nitrate selective ion exchange resins," Reactive and Functional Polymers, 66(11), 1206-1214 (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.03.009
  13. Alikhani, M. and Moghbeli, M. R., "Ion-exchange polyHIPE type membrane for removing nitrate ions: Preparation, characterization, kinetics and adsorption studies," Chem. Eng. J., 239, 93-104 (2014). https://doi.org/10.1016/j.cej.2013.11.013
  14. Epsztein, R., Nir, O., Lahav, O., and Green, M., "Selective nitrate removal from groundwater using a hybrid nanofiltration-reverse osmosis filtration scheme," Chem. Eng. J., 279, 372-378 (2015). https://doi.org/10.1016/j.cej.2015.05.010
  15. Banasiak, L. J., and Schafer, A. I., "Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter", J. Membr. Sci, 334(1-2), 101-109 (2009). https://doi.org/10.1016/j.memsci.2009.02.020
  16. Taguchi, S., and Feliu, J. M., "Electrochemical reduction of nitrate on Pt (S)[n (1 1 1)×(1 1 1)] electrodes in perchloric acid solution," Electrochim. Acta, 52(19), 6023-6033 (2007). https://doi.org/10.1016/j.electacta.2007.03.057
  17. Duca, M., Cucarella, M. O., Rodriguez, P., and Koper, M. T., "Direct reduction of nitrite to N2 on a Pt (100) electrode in alkaline media," J. Am. Chem. Soc., 132(51), 18042-18044 (2010). https://doi.org/10.1021/ja1092503
  18. Yang, J., Sebastian, P., Duca, M., Hoogenboom, T., and Koper, M. T., "pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes," Chem. Commun., 50(17), 2148-2151 (2014). https://doi.org/10.1039/c3cc49224a
  19. Li, J., Zhan, G., Yang, J., Quan, F., Mao, C., Liu, Y., and Yu, J. C., "Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters," J. Am. Chem. Soc., 142(15), 7036-7046 (2020). https://doi.org/10.1021/jacs.0c00418
  20. Reyter, D., Belanger, D., and Roue, L., "Study of the electroreduction of nitrate on copper in alkaline solution," Electrochim. Acta, 53(20), 5977-5984 (2008). https://doi.org/10.1016/j.electacta.2008.03.048
  21. Reyter, D., Chamoulaud, G., Belanger, D., and Roue, L., "Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling," J. Electroanal. Chem., 596(1), 13-24 (2006). https://doi.org/10.1016/j.jelechem.2006.06.012
  22. Oznuluer, T., Ozdurak, B., and Dogan, H. O., "Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media," J. Electroanal. Chem., 699, 1-5 (2013). https://doi.org/10.1016/j.jelechem.2013.04.001
  23. Mattarozzi, L., Cattarin, S., Comisso, N., Gerbasi, R., Guerriero, P., Musiani, M., and Verlato, E., "Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate," J. Electrochem. Soc., 162(6), D236 (2015).
  24. Cirmi, D., Aydin, R., and Koleli, F., "The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode," J. Electroanal. Chem., 736, 101-106 (2015). https://doi.org/10.1016/j.jelechem.2014.10.024
  25. Mitov, M., Chorbadzhiyska, E., Nalbandian, L., and Hubenova, Y., "Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis," J. Power Sources, 356, 467-472 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.066
  26. Nianwen, F., Zhengkui, L., Tao, Z., Lin, Z., and Ningmei, W., "Optimization of electrochemical denitrification process parameters with Box-Behnken design," Chinese Journal of Environmental Engineering, 7(5), 1785-1790 (2013).
  27. Sim, J., Seo, H., and Kim, J., "Electrochemical denitrification of metal-finishing wastewater: Influence of operational parameters," Korean J. Chem. Eng., 29(4), 483-488 (2012). https://doi.org/10.1007/s11814-011-0202-6
  28. Su, L., Li, K., Zhang, H., Fan, M., Ying, D., Sun, T., and Jia, J., "Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode," Water Res., 120, 1-11 (2017). https://doi.org/10.1016/j.watres.2017.04.069
  29. Kim, W. Y., Son, D. J., Yun, C. Y., Kim, D. G., Chang, D., Sunwoo, Y., and Hong, K. H., "Performance assessment of electrolysis using copper and catalyzed electrodes for enhanced nutrient removal from wastewater," Journal of Electrochemical Science and Technology, 8(2), 124-132 (2017). https://doi.org/10.5229/JECST.2017.8.2.124
  30. Lacasa, E., Canizares, P., Llanos, J., and Rodrigo, M. A., "Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media," J. Hazard. Mater., 213, 478-484 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.034
  31. Dortsiou, M., Katsounaros, I., Polatides, C., and Kyriacou, G., "Influence of the electrode and the pH on the rate and the product distribution of the electrochemical removal of nitrate," Environ. Technol., 34(3), 373-381 (2013). https://doi.org/10.1080/09593330.2012.696722
  32. Li, M., Feng, C., Zhang, Z., and Sugiura, N., "Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes," Electrochim. Acta, 54(20), 4600-4606 (2009). https://doi.org/10.1016/j.electacta.2009.03.064
  33. Li, W., Xiao, C., Zhao, Y., Zhao, Q., Fan, R., and Xue, J., "Electrochemical reduction of high-concentrated nitrate using Ti/TiO2 nanotube array anode and Fe cathode in dual-chamber cell," Catal. Lett., 146(12), 2585-2595 (2016). https://doi.org/10.1007/s10562-016-1894-3
  34. Reyter, D., Belanger, D., and Roue, L., "Optimization of the cathode material for nitrate removal by a paired electrolysis process," J. Hazard. Mater., 192(2), 507-513 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.054
  35. Zhang, Y., Zhao, Y., Chen, Z., Wang, L., Wu, P., and Wang, F., "Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: high efficiency and N2 selectivity," Electrochim. Acta, 291, 151-160 (2018). https://doi.org/10.1016/j.electacta.2018.08.154
  36. Li, M., Feng, C., Zhang, Z., Lei, X., Chen, R., Yang, Y., and Sugiura, N., "Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method," J. Hazard. Mater., 171(1-3), 724-730 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.066
  37. Zhang, Y., Zhao, Y., Chen, Z., Wang, L., Zhou, L., Wu, P., and Ou, P., "Fe/Cu Composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal," J. Electrochem. Soc., 165(9), E420 (2018).
  38. Guo, X., Feng, C., Li, M., and Hou, L., "Electrochemical removal of nitrate ion on brass cathode and DSA anode," 3rd International Conference, Bioinformatics and Biomedical Engineering. IEEE, 1-4 (June. 2009).
  39. Xu, D., Li, Y., Yin, L., Ji, Y., Niu, J., and Yu, Y., "Electrochemical removal of nitrate in industrial wastewater," Frontiers of Environmental Science & Engineering, 12(1), 1-14 (2018).
  40. Zhang, X., Wang, Y., Liu, C., Yu, Y., Lu, S., and Zhang, B., "Recent advances in non-noble metal electrocatalysts for nitrate reduction," Chem. Eng. J., 403, 126269 (2021).
  41. Shen, Z., Liu, D., Peng, G., Ma, Y., Li, J., Shi, J., J. Peng and Ding, L., "Electrocatalytic reduction of nitrate in water using Cu/Pd modified Ni foam cathode: High nitrate removal efficiency and N2-selectivity," Sep. Purif. Technol., 241, 116743 (2020).
  42. Yang, S., Wang, L., Jiao, X., and Li, P., "Electrochemical reduction of nitrate on different Cu-Zn oxide composite cathodes," Int. J. Electrochem. Sci, 12, 4370-4383 (2017). https://doi.org/10.20964/2017.05.80