• Title/Summary/Keyword: catalytic sensor

Search Result 93, Processing Time 0.031 seconds

Fabrication of catalytic combustible gas sensor for hydrocarbon gas detection (탄화수소계 가스 감지용 접촉연소식 가스센서의 제조)

  • Park, Hyo-Derk;Lee, Jae-Suk;Kim, Kun-Nyun;Park, Jong-Wan;Shin, Sang-Mo
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 1994
  • Catalytic combustible gas sensors were fabricated by using ${\gamma}-Al_{2}O_{3}$ with large surface area and noble metal catalysts. The optimum conditions for ${\gamma}-Al_{2}O_{3}$ fabrication were investigated by DT/TGA and XRD analyses and it was found that fabricated ${\gamma}-Al_{2}O_{3}$ had superior value as surface area of $215.5m^{2}/g$. Gas sensors were manufactured and tested to inflammable gases by using Pt coil as a heater and temperature sensing part, fine ${\gamma}-Al_{2}O_{3}$ powder as a bead material and Pt, Pd noble metal powder as a catalyst. From the results, fabricated sensor showed good sensitivity to LPG and LNG of 20mV/l000ppm, 6.5mV/l000ppm respectively.

  • PDF

The $CH_4$and $C_4$$H_{10}$ Sensitivity Measurement and Voltage Variation Using Catalytic Combustion Type Gas Sensor (접촉연소식 센서를 이용한 $CH_4$$C_4$$H_{10}$ 감도 측정 및 전압변화)

  • 윤헌주;신종열;홍진웅
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.44-48
    • /
    • 2001
  • In this study, we analyzed the $CH_4$and $C_4$$H_{10}$ sensitivity measurement and voltage variation using catalytic type gas sensor characteristics in catalytic combustion type gas detecter sensors. Gas detector shall operate as intended when exposed for 24 hours to air having a relative humidity of 65 percent at a temperature of $20^{\circ}c$ and humidity of 85 percent at a temperature of $40^{\circ}c$. The gas detecter sensors are to be subjected to operation for 210 days in an area that has been determined to be equivalent to a typical residential atmosphere with an air velocity of 50 cm/sec. The source of energy for a gas detector sensors employing a supplementary basic circuit is energized from a seperate source of supply direct applied voltage 2.1V, 2.2V, 2.3V. As a result, it was confirmed that the relative humidity and temperature by regression each analysis, compared to the isobutane characteristic graph and methane characteristic graph by a relative humidity of 65% and 85% at a temperature($20^{\circ}c$, $40^{\circ}c$) show a similar linear pattern on the whore.

  • PDF

Recent Advances and Trends in Filters for Highly Selective Metal Oxide Gas Sensors (산화물 반도체형 가스센서의 선택성 향상을 위한 필터 연구 동향 및 전략)

  • Seong-Yong Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • Metal-oxide-based semiconductor gas sensors are widely used because of their advantages, such as high response and simple sensing mechanism. Recently, with the rapid progress in sensor networks, computing power, and microsystem technology, sensor applications are expanding to various fields, such as food quality control, environmental monitoring, healthcare, and artificial olfaction. Therefore, the development of highly selective gas sensors is crucial for practical applications. This article reviews the developments in novel sensor design consisting of sensing films and physical and chemical filters for highly selective gas sensing. Unlike conventional sensors, the sensor structures with filters can separate the sensing and catalytic reactions into independent processes, enabling selective and sensitive gas sensing. The main objectives of this study are directed at introducing the role of various filters in gas-sensing reactions and promising sensor applications. The highly selective gas sensors combined with a functional filter can open new pathways toward the advancement of high-performance gas sensors and electronic noses.

Characterization of A Catalystic Gas Sensor for Measuring Heat Content of Natural Gas (천연가스의 열용량을 측정하기 위한 촉매가스센서의 특징)

  • Lee K. Y.;Maclay G. J.;Stetter J. R.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • A low power (below than 300 mW) catalytic bead combusible gas sensor is developed and utilized with a computer controlled sampling system for measuring heat content of natural gas. The heat content of gas is proportional to the change in the energy required to exposure to the sample of combustible gas. The heat content of natural gas samples ranging 36.30 - 39.88 $MJ/m^3$ is measured in the range of approximately $1\%$ error, which is comparable to its nominal heat content. Each gas represents a slightly different curve of sensitivity to sensor temperature. Thus all of the sensitivities are not equal to every temperature. In calibration process the choice of a optimum operating temperature is an important factor that influences the overall performance of the measurement system.

  • PDF

Hydrocarbon Gas-sensing Properties of Catalytic Combustion Type Gas Sensor (접촉연소식 가스센서의 탄화수소계 가스 감응 특성)

  • Lee, Dae-Sik;Lee, Sang-Mun;Nam, Ki-Hong;Han, Sang-Do;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.327-332
    • /
    • 1999
  • Catalytic combustion type gas sensors were fabricated by using noble metal(Pt and Pd) added ${\gamma}-Al_2O_3$ powder with specific surface area of $200\;m^2/g$. The fabricated sensor showed power consumption of 500 mW at the operating voltage of 1.75 V and high sensitivity of about 120 mV for butane, methane, or propane 100%LEL, respectively. The sensor properties also showed good linearity to hydrocarbon gas concentration variation, reproductivity and stability for relative humidity variation. And it showed high stability in butane ambient for 100 days.

  • PDF

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.

ISFET Urea Sensor Using PVA-SbQ Polymer (PVA-SbQ 고분자 물질을 이용한 ISFET 尿素센서)

  • Sung Moon Choi;Chang-Soo Kim;Dong-Hyun Nam;Byung-Ki Sohn;Ui-Rak Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.496-503
    • /
    • 1992
  • An ISFET urea sensor was fabricated by immobilizing the urease using photosensitive polymer, poly(vinyl alcohol)-SbQ on the H$^+$ sensing $Si_3$$N_4$ thin film of pH-ISFET. The sensor could determine the urea concentration in the range of 1∼50 mg/dl with fast response and good repeatability. For its application to clinical analysis, the interferences of the various materials which cause inhibition in urease catalytic reactions in blood was investigated. The results of the urea measurements in blood plasma using the ISFET urea sensor were compared with these of conventional spectrophotometric method.

  • PDF

Potentiometric NOx sensors for automotive exhaust using YSZ(yittria stabilized zirconia) electrolyte (YSZ 전해질을 이용한 농담전지식 자동차용 NOx센서)

  • Park, Jin-Su;Park, Kwang-Chol;Park, C.O.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • Two kinds of new NOx sensing mechanism was proposed and examined. One of those was potentiomtric sensor based on the measurement of decomposed oxygen from NO using YSZ porous diffusion barrier and Pd catalytic electrode. The sensor based on decomposed oxygen measurement responded to the range of 300 - 1000 ppm NO in $N_{2}$ environment and the sensitivities were coincident with theoretical values at 700 and $800^{\circ}C$ but the decomposition rate depended on gas flow rate. The other sensor was equilibrium potentiometric type using $Gd_{2}O_{3}$-nitrates solid solution as sensing material. The sensor using $Gd_{2}O_{3}$-nitrates solid solution was suitable for NOxxsensing at $700^{\circ}C$ in 5 % oxygen and the sensitivity was 19.3 mV/decade. However, long term stability of the sensing material at high temperature was not sufficient.