• 제목/요약/키워드: catalyst layer

검색결과 357건 처리시간 0.028초

실리콘 기판의 산화층이 다중벽 탄소나노튜브 성장에 미치는 영향 (Effect of SiO2 Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes)

  • 김금채;이수경;김상효;황숙현;;전민현
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.50-53
    • /
    • 2009
  • Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and $SiO_2$/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at $900^{\circ}C$. It was found that the diameter of the MWNTs on the Si substrate sample is approximately $5{\sim}10nm$ larger than that of a $SiO_2$/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구 (A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building)

  • 박동환;손영준;최윤영;김민진;홍종섭
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho;Ahn, Hong-Joo;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.900-909
    • /
    • 2018
  • A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.

직접메탄올 연료전지의 성능에 미치는 메탄올 연료의 불순물 (Impurities in the methanol fuel on the performance of direct methanol fuel cell)

  • 백동현;이재혁;박영철;임성엽;김상경;정두환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.124.1-124.1
    • /
    • 2010
  • The impurities in the methanol fuel that is used for direct methanol fuel cell (DMFC) could greatly affect the performance of membrane electrode assemblies (MEA). The most common impurities in the commercial methanol fuel are mainly ethanol, acetone, acetaldehyde, or ammonia. In this study, the effect of impurities in methanol fuel was investigated on the performance of MEA. The MEA for DMFC were prepared using a semi-automatic bar-coating machine, which can prepare the catalyst layer with uniform thickness for MEA. As a result, a single cell supplied with one of the 6 different kinds of methanol fuels showed a significant degradation of the fuel cell performance. The most common impurities in the commercial methanol fuel is mainly ethanol, acetone, acetaldehyde, or ammonia. The effects of the kind and the concentration of impurities in the methanol fuels were investigated on the performance of MEA for DMFC. We will propose the optimum compositions and limit concentration of impurities in methanol fuel for high performance of MEA for DMFC.

  • PDF

임피던스 복소캐패시턴스 분석법의 이론 및 응용 (Complex Capacitance Analysis of Impedance Data and its Applications)

  • 장종현;오승모
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.223-234
    • /
    • 2010
  • 본 총설에서는 캐패시터적인 특성을 가지는 다공성 전극의 전기화학특성 분석에 활용되는 임피던스의 복소캐패시턴스 분석법(complex capacitance analysis)의 이론 및 응용에 대해 정리하였다. 이론적으로 캐패시터적인 특성을 갖는 전기화학시스템에 대해 캐패시턴스허수부 도시를 활용하면 효과적인 해석이 가능함이 제시되었다. 또한, 복소캐패시턴스 분석법은 다공성 탄소 재료/전극의 EDLC 특성, 미세기공 내부의 이온전도 특성, 고분자전해질연료전지의 촉매층 이온저항 등의 분석에 효과적으로 적용될 수 있음이 검증되었다.

New Conjugated Polymer Based on Dihydroindoloindole for LEDs

  • Jin, Yeong-Eup;Kim, Kwang-hyun;Song, Su-hee;Kim, Jin-woo;Kim, Jae-hong;Park, Sung-Heum;Lee, Kwang-hee;Suh, Hong-suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권7호
    • /
    • pp.1043-1047
    • /
    • 2006
  • New electroluminescence polymer, poly(5,10-dihexyl-5,10-dihydroindolo[3,2-b]indole-2,7-diyl) (PININO) was synthesized by Yamamoto conditions with Ni(0) catalyst. The full characterization of structures and properties as well as the performances of the electroluminescence devices of the new polymer are presented. The resulting polymer, which exhibits good solubility in common organic solvents, was used as the electroluminescence layer for the light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Al). PININO shows turn-on voltage of 2.5 V, and electroluminescence (EL) with maximum peak at 490 nm, maximum brightness of 40 cd/$m^{2}$ at 8 V, and efficiency of 0.002 cd/A at 350 mA/$cm^{2}$.

Effect of Rapid Thermal Annealing on Growth and Field Emission Characteristics of Carbon Nanotubes

  • Ko, Sung-Woo;Shin, Hyung-Cheol;Park, Byung-Gook;Lee, Jong-Duk;Jun, Pil-Goo;Kwak, Byung-Hwak;Noh, Hyung-Wook;Uh, Hyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.453-455
    • /
    • 2004
  • The effect of rapid thermal annealing (RTA) treatment on the growth characteristics of CNTs was investigated. We observed that Ni catalyst film was agglomerated by RTA treatment, resulting in the formation of Ni nanoparticles. The well aligned CNTs were grown from the Ni nanoparticles by plasma enhanced chemical vapor deposition (PECVD). It is shown that the size and distribution of the nanoparticles depend mainly on the annealing temperature and initial thickness of the metal layer. Also, it was found that CNTs grown through optimal RTA treatment had the more improved field emission characteristics than those of as-grown CNTs.

  • PDF

유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계 (Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency)

  • 이인원;안남현
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

패턴이 형성된 탄소나노튜브 매트의 이산화질소 감응 특성 (NO2 gas sensing characteristics of patterned carbon nanotube mats)

  • 조우성;문승일;백경갑;박정호;주병권
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.199-204
    • /
    • 2006
  • Carbon nanotube (CNT) mats grown by thermal chemical vapor deposition on a micromachined substrate with a chrome heater and a diaphragm were investigated as sensing materials of resistive gas sensors for nitrogen dioxide ($NO_{2}$) gas. The aligned CNT mats fabricated into mesh and serpentine shapes by the patterned cobalt catalyst layer. CNT mats showed a p-type electrical resistivity with decreasing electrical resistance upon exposure to $NO_{2}$. All sensors exhibited a reversible response at a thermal treatment temperature of $130^{\circ}C$ for about 5 minutes. The resistance change to $NO_{2}$ of the mesh-shaped CNT mats was larger than that of the serpentine-shaped CNT mats.