DOI QR코드

DOI QR Code

Effect of SiO2 Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes

실리콘 기판의 산화층이 다중벽 탄소나노튜브 성장에 미치는 영향

  • Kim, Geum-Chae (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Lee, Soo-Kyoung (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Sang-Hyo (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Hwang, Sook-Hyun (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Choi, Hyon-Kwang (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Jeon, Min-Hyon (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 김금채 (인제대학교 나노시스템공학과 나노메뉴팩쳐링연구소) ;
  • 이수경 (인제대학교 나노시스템공학과 나노메뉴팩쳐링연구소) ;
  • 김상효 (인제대학교 나노시스템공학과 나노메뉴팩쳐링연구소) ;
  • 황숙현 (인제대학교 나노시스템공학과 나노메뉴팩쳐링연구소) ;
  • ;
  • 전민현 (인제대학교 나노시스템공학과 나노메뉴팩쳐링연구소)
  • Published : 2009.01.31

Abstract

Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and $SiO_2$/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at $900^{\circ}C$. It was found that the diameter of the MWNTs on the Si substrate sample is approximately $5{\sim}10nm$ larger than that of a $SiO_2$/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.

Keywords

References

  1. A. Shah, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, Science, 285, 692 (1999) https://doi.org/10.1126/science.285.5428.692
  2. B. O'Regan, M. Gratzel, Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  3. M. A. Green, K. Emery, D. L. King, Y. Hishikawa and W. Warta, Prog. Photovolt.: Res. Appl., 15, 35 (2007) https://doi.org/10.1002/pip.741
  4. M. K. Nazeeruddin, A. Kay, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993) https://doi.org/10.1021/ja00067a063
  5. M. Gratzel, J. Inorg. Chem., 44, 6841 (2005) https://doi.org/10.1021/ic0508371
  6. N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc., 144, 876(1997) https://doi.org/10.1149/1.1837502
  7. A. Hauch and A. Georg, Electrochim. Acta, 46, 3457 (2001) https://doi.org/10.1016/S0013-4686(01)00540-0
  8. T. Hoshikawa, M. Yamada, R. Kikuchi and K. Eguchi, J. Electrochem. Soc., 152, E68 (2005) https://doi.org/10.1149/1.1849776
  9. H. J. Kim, D. Y. Lee, B. K. Koo, W. J. Lee, J. S. Song and D. Y. Lee, J. of KIEEME, 17, 1090 (2004)
  10. A. Kay and M. Grätzel, Sol. Energy Mater. Sol. Cells, 44, 99, (1996) https://doi.org/10.1016/0927-0248(96)00063-3
  11. R. L. Vander Wal and L. J. Hall, Carbon, 41, 659, (2003) https://doi.org/10.1016/S0008-6223(02)00369-X
  12. D. F. Johnson, B. J. Craft and S. M. Jaffe, J. Nanopart. Res., 3, 63, (2001) https://doi.org/10.1023/A:1011419628735

Cited by

  1. Investigation of Mechanical Properties and Elongated Ni Grain Growth in an Al2O3-Ni Composite during Low-Energy Ball Milling vol.52, pp.11, 2011, https://doi.org/10.2320/matertrans.M2011196
  2. The Characterization of Alumina Reinforced with CNT by the Mechanical Alloying Method vol.479-480, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.479-480.35
  3. The characterisation of alumina reinforced with carbon nanotube by the mechanical alloying method vol.18, pp.sup3, 2014, https://doi.org/10.1179/1432891714Z.000000000591
  4. Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid vol.24, pp.4, 2018, https://doi.org/10.1007/s12540-018-0105-8