DOI QR코드

DOI QR Code

New Conjugated Polymer Based on Dihydroindoloindole for LEDs

  • Jin, Yeong-Eup (Department of Chemistry and Center for Plastic Information System, Pusan National University) ;
  • Kim, Kwang-hyun (Department of Chemistry and Center for Plastic Information System, Pusan National University) ;
  • Song, Su-hee (Department of Chemistry and Center for Plastic Information System, Pusan National University) ;
  • Kim, Jin-woo (Department of Chemistry and Center for Plastic Information System, Pusan National University) ;
  • Kim, Jae-hong (Department of Chemistry and Center for Plastic Information System, Pusan National University) ;
  • Park, Sung-Heum (Department of Physics, Pusan National University) ;
  • Lee, Kwang-hee (Department of Physics, Pusan National University) ;
  • Suh, Hong-suk (Department of Chemistry and Center for Plastic Information System, Pusan National University)
  • Published : 2006.01.20

Abstract

New electroluminescence polymer, poly(5,10-dihexyl-5,10-dihydroindolo[3,2-b]indole-2,7-diyl) (PININO) was synthesized by Yamamoto conditions with Ni(0) catalyst. The full characterization of structures and properties as well as the performances of the electroluminescence devices of the new polymer are presented. The resulting polymer, which exhibits good solubility in common organic solvents, was used as the electroluminescence layer for the light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Al). PININO shows turn-on voltage of 2.5 V, and electroluminescence (EL) with maximum peak at 490 nm, maximum brightness of 40 cd/$m^{2}$ at 8 V, and efficiency of 0.002 cd/A at 350 mA/$cm^{2}$.

Keywords

References

  1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, R. L.; Holmes, A. B. Nature 1990, 347, 539 https://doi.org/10.1038/347539a0
  2. Brown, A. R.; Bradley, D. D. C.; Burroughes, J. H.; Friend, R. H.; Greenham, N. C.; Burn, P. L.; Holmes, A. B.; Kraft, A. Appl. Phys. Lett. 1992, 61, 2793 https://doi.org/10.1063/1.108094
  3. Gustafasson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477 https://doi.org/10.1038/357477a0
  4. Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982 https://doi.org/10.1063/1.105039
  5. Cimrova, V.; Remmers, M.; Neher, D.; Wegner, G. Adv. Mater. 1996, 8, 146 https://doi.org/10.1002/adma.19960080209
  6. Jin, Y.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Lee, K.; Suh, H. Macromolecules 2004, 37, 6711 https://doi.org/10.1021/ma0493022
  7. Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798 https://doi.org/10.1002/adma.19970091006
  8. Suh, H.; Jin, Y.; Park, S. H.; Kim, D.; Kim, J.; Kim, C.; Kim, J. Y.; Lee, K. Macromolecules 2005, 38, 6285 https://doi.org/10.1021/ma050812l
  9. Jin, Y.; Ju, J.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Son, S. M.; Jin, S. H.; Lee, K.; Suh, H. Macromolecules 2003, 36, 6970 https://doi.org/10.1021/ma025862u
  10. Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993, 365, 628 https://doi.org/10.1038/365628a0
  11. Bianch, R. F.; Balogh, D. T.; Tinani, M.; Faria, R. M.; Irene, E. A. J. Polym. Sci. B 2004, 42, 1033 https://doi.org/10.1002/polb.10734
  12. Scott, J. C.; Kaufman, J. H.; Brock, P. J.; Dipietro, R.; Salem, J.; Goitia, J. A. J. Appl. Phys. 1996, 79, 2745 https://doi.org/10.1063/1.361096
  13. Zhao, W.; Cao, T.; White, J. M. Adv. Funct. Mater. 2004, 14, 783 https://doi.org/10.1002/adfm.200305173
  14. Tada, K.; Onoda, M. J. Appl. Phys. 1999, 86, 3134 https://doi.org/10.1063/1.371178
  15. Rothberg, L. J.; Yan, M.; Son, S.; Galvin, M. E.; Kwock, E. W.; Miller, T. M.; Katz, H. E.; Haddon, R. C.; Papadimitrakopoulos, F. Synth. Met. 1996, 78, 231 https://doi.org/10.1016/0379-6779(96)80144-5
  16. Cumpston, B. H.; Jensen, K. F. Synth. Met. 1995, 73, 195 https://doi.org/10.1016/0379-6779(95)80015-8
  17. Scurlock, R. D.; Wang, B.; Ogilby, P. R.; Sheats, J. R.; Clough, R. L. J. Am. Chem. Soc. 1995, 117, 10194 https://doi.org/10.1021/ja00146a004
  18. Gelinck, G. H.; Warman, J. M. Chem. Phys. Lett. 1997, 277, 361 https://doi.org/10.1016/S0009-2614(97)00909-3
  19. Saltiel, J.; Shannon, P. T.; Zafiriou, O. C.; Uriarte, A. K. J. Am. Chem. Soc. 1980, 102, 6799 https://doi.org/10.1021/ja00542a022
  20. Li, C. J.; Chen, D. L.; Costello, C. W. Organic Process Research & Development 1997, 1, 325 https://doi.org/10.1021/op970208d
  21. Murray, M. M.; Kaszynski, P.; Kaisaki, D. A.; Chang, W.; Dougherty, D. A. J. Am. Chem. Soc. 1994, 116, 8152 https://doi.org/10.1021/ja00097a024
  22. McDonald, R. N.; Schwab, P. A. J. Am. Chem. Soc. 1964, 86, 4866 https://doi.org/10.1021/ja01076a028
  23. Kaszynski, P.; Dougherty, D. A. J. Org. Chem. 1993, 58, 5209 https://doi.org/10.1021/jo00071a034

Cited by

  1. Synthesis and Characterization of Novel Conjugated Polymer with Thiophene and Benzimidazole vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3045
  2. An expedient synthesis of fused heteroacenes bearing a pyrrolo[3,2-b]pyrrole core vol.48, pp.100, 2012, https://doi.org/10.1039/c2cc36689d
  3. ]pyrroles vol.2, pp.5, 2013, https://doi.org/10.1002/ajoc.201200201
  4. ]indole-Based Acceptor-Donor-Acceptor Small Molecule vol.2013, pp.23, 2013, https://doi.org/10.1002/ejoc.201300443
  5. ]indole-Based Copolymers with Alternating Donor and Acceptor Moieties for Organic Photovoltaics vol.46, pp.4, 2013, https://doi.org/10.1021/ma301987p
  6. ]pyrrole Core: Scope and Limitation vol.79, pp.23, 2014, https://doi.org/10.1021/jo501402n
  7. ]pyrrole and Its π-Expanded Analogues vol.9, pp.11, 2014, https://doi.org/10.1002/asia.201402367
  8. Novel synthesis of 5-methyl-5,10-dihydroindolo[3,2-b]indoles by Pd-catalyzed C–C and two-fold C–N coupling reactions vol.13, pp.2, 2015, https://doi.org/10.1039/C4OB01723D
  9. Extension of Pyrrolopyrrole π-System: Approach to Constructing Hexacyclic Nitrogen-Containing Aromatic Systems vol.17, pp.24, 2015, https://doi.org/10.1021/acs.orglett.5b03129
  10. -Methyl Transfer Induced Copper-Mediated Oxidative Diamination of Alkynes vol.18, pp.10, 2016, https://doi.org/10.1021/acs.orglett.6b01067
  11. ]indoles vol.18, pp.14, 2016, https://doi.org/10.1021/acs.orglett.6b01343
  12. Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells vol.8, pp.1, 2017, https://doi.org/10.1039/C6SC02832B
  13. ]indole donor-based D–π–A dyes for DSCs: investigating the role of π-spacers towards recombination vol.43, pp.2, 2019, https://doi.org/10.1039/C8NJ04561E
  14. Synthesis and Properties of PCPP-Based Conjugated Polymers Containing Pendant Carbazole Units for LEDs vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2419
  15. White Electroluminescence from Bicarbazyl-containing Conjugated Polymers as Single-Emitting Component vol.29, pp.1, 2006, https://doi.org/10.5012/bkcs.2008.29.1.135
  16. Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.139
  17. Synthesis and Characterization of New Dihydroindolo[3,2-b]indole and 5,6-Bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-Based Polymer for Bulk Heterojunction Polymer Solar Cells vol.35, pp.5, 2006, https://doi.org/10.5012/bkcs.2014.35.5.1485
  18. One-Pot MCR-Oxidation Approach toward Indole-Fused Heteroacenes vol.82, pp.19, 2006, https://doi.org/10.1021/acs.joc.7b02039
  19. NaNO2/K2S2O8‐mediated Selective Radical Nitration/Nitrosation of Indoles: Efficient Approach to 3‐Nitro‐ and 3‐Nitrosoindoles vol.361, pp.10, 2006, https://doi.org/10.1002/adsc.201900070
  20. Rh(III)-Catalyzed Tandem Acylmethylation/Nitroso Migration/Cyclization of N-Nitrosoanilines with Sulfoxonium Ylides in One Pot: Approach to 3-Nitrosoindoles vol.22, pp.2, 2006, https://doi.org/10.1021/acs.orglett.9b03768
  21. Domino C-N Bond Formation via a Palladacycle with Diaziridinone. An Approach to Indolo[3,2-b]indoles vol.23, pp.9, 2021, https://doi.org/10.1021/acs.orglett.1c00466