• Title/Summary/Keyword: catalyst activity

Search Result 1,108, Processing Time 0.031 seconds

Solvent-free Synthesis of Propargylic Alcohols using ZnO as a New and Reusable Catalyst by Direct Addition of Alkynes to Aldehydes

  • Hosseini-Sarvari, Mona;Mardaneh, Zahra
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4297-4303
    • /
    • 2011
  • Under solvent-free conditions, the synthesis of propargylic alcohols by direct addition of terminal alkynes to aldehydes promoted by ZnO as a novel, commercially, and cheap catalyst is described. Furthermore, the catalyst can be reused for several times without any significant loss of its catalytic activity.

Phosphomolybdic Acid Supported on Silica Gel as an Efficient and Reusable Catalyst for Cyanosilylation of Aldehydes

  • Kadam, Santosh T.;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1320-1322
    • /
    • 2008
  • Phosphomolybdic acid supported on silica gel (PMA-$SiO_2$) is an efficient catalyst for the activation of TMSCN for the facile cyanosilylation of various aldehydes. Cyano transfer from TMSCN to aldehyde proceeds smoothly at rt in presence of 0.8 mol % of PMA-$SiO_2$ leading to a range of cyanosilylether in excellent yield (mostly over 93%) within short reaction time (30 min). The catalyst can be recovered and reused several times without loss of activity.

Polymer Supported Cyanide as an Efficient Catalyst in Benzoin Condensation: An Efficient Route to α-Hydroxy Carbonyl Compounds

  • Kiasat, Ali Reza;Badri, Rashid;Sayyahi, Soheil
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1164-1166
    • /
    • 2009
  • Aromatic aldehydes are efficiently self-condensed into $\alpha$-hydroxy carbonyl compounds by polystyrene-supported ammonium cyanide as an excellent organocatalyst in C-C bond formation. The reaction proceeds in water under mild reaction conditions. The polymeric catalyst can be easily separated by filtration and reused several times without appreciable loss of activity.

Development of Oxidation Catalyst for Diesel Engine (디젤엔진 배기가스 정화용 산화촉매 개발)

  • 최경일;최용택;유관식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.529-537
    • /
    • 2000
  • Several Pt-based oxidation catalysts with different loading were prepared with various metal precursor solutions and characterized with H$_2$ chemisorption and TEM for Pt particle size. V was added to Pt-based catalyst for inhibiting SO$_2$oxidation reaction, as result, Pt-V/Ti-Si catalyst prepared by ERMS(Free Reduced Metal in Solution) method showed high enough activity and better inhibition on SO$_2$oxidation than Pt only catalyst. Optimum Pt particle size for diesel oxidation reaction turned out to be the size of around 20 nm. A prototype catalyst was prepared for light=duty diesel passenger car, and teated for the emission reduction performance with Korean regulation test mode(CVS-75 mode) on chassis dynamometer. The catalyst shows the performance reduction of 75~94% for CO, 53~67% for HC and 10~31% for PM. In the case of heavy-duty diesel catalyst, the domestic formal regulation teat mode D-13 was adopted for both Na engine and Turbo engine. The conversions of CO and THC are high enough(86% and 41%) while the reductions of NOx and PM are relatively low(3~11%).

  • PDF

Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity (Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계)

  • Lee, Dae-Won;Sung, Ju Young;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.281-290
    • /
    • 2018
  • As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperature-programmed oxidation results.

Comparison of Catalyst Support Degradation of PEMFC Electrocatalysts Pt/C and PtCo/C (PEMFC 전극촉매 Pt/C와 PtCo/C의 촉매 지지체 열화비교)

  • Sohyeong Oh;Yoohan Han;Minchul Chung;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.341-347
    • /
    • 2023
  • In PEMFC, PtCo/C alloy catalysts are widely used because of good performance and durability. However, few studies have been reported on the durability of carbon supports of PtCo/C evaluated at high voltages (1.0~1.5 V). In this study, the durability of PtCo/C catalysts and Pt/C catalysts were compared after applying the accelerated degradation protocol of catalyst support. After repeating the 1.0↔1.5V voltage change cycles, the mass activity, electrochemical surface area (ECSA), electric double layer capacitance (DLC), Pt dissolution and the particle growth were analyzed. After 2,000 cycles of voltage change, the current density per catalyst mass at 0.9V decreased by more than 1.5 times compared to the Pt/C catalyst. This result was because the degradation rate of the carbon support of the PtCo/C catalyst was higher than that of the Pt/C catalyst. The Pt/C catalyst showed more than 1.5 times higher ECSA reduction than the PtCo/C catalyst, but the corrosion of the carbon support of the Pt/C catalyst was small, resulting in a small decrease in I-V performance. In order to improve the high voltage durability of the PtCo/C catalyst, it was shown that improving the durability of the carbon support is essential.

Remanufacturing of Commercial $V_2O_5-WO_3/TiO_2$ Catalyst used in the SCR Process of Incinerator (소각장 SCR 공정에서 사용되는 상용 $V_2O_5-WO_3/TiO_2$ 촉매의 재제조에 관한 연구)

  • Yoon, Goan-Gu;Yoo, Man-Sik;Lim, Jong-Sun;Kim, Tae-Won;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.970-977
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were remanufactured by washing with distilled water and arid solution and reimpregnation with catalytic active components($V_2O_5-WO_3$). The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. Under the experimental condition used in this study, the remanufactured catalysts activated by distilled water ultra sonic cleaning, the catalytic activity was recovered in the range of $66{\sim}93%$ of that of the fresh and the maximum activity was showed when the ultra sonic cleaning time was more than 3 minutes. The remanufactured catalysts by acid solution ultra sonic cleaning, the catalytic activity was recovered in the range of $81{\sim}97%$ of that of the fresh catalyst and the maximum catalytic activity was shooed when the pH of the acid solution was 5. The remanufactured catalysts by reimpregnation with $V_2O_5$ and $WO_3$, the catalytic activity was recovered in the range of $87{\sim}100%$ of that of the fresh catalyst. Maximum catalytic activity was showed when the $V_2O_5$ was reimpregnated more than 1.0 wt %. In this case, the catalytic activity was recovered 97% of that of the fresh catalyst especially at the $150^{\circ}C$ of the experimental temperature.

Recyclable Porphyrin Catalyst with Core-shell Nanostructure

  • Choi, Bo-Gyu;Ko, Soo-Y.;Nam, Won-Woo;Jeong, Byeong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1819-1822
    • /
    • 2005
  • In the search for a simple preparation method of heterogeneous catalyst, the iron porphyrins were coordinated bonded to the surface of a polymeric core-shell nanosphere. The heterogeneous catalyst was characterized by FT-IR, scanning electron microscope, and UV-vis spectrophotometer. The iron porphyrin bound core-shell nanospheres was about 470 nm in diameter and their catalytic activity for cyclohexene oxidation was similar to a homogeneous iron porphyrin in a solvent composition range of 25-75% acetonitrile/water (v/v). In addition, they could be recovered by simple centrifugation and their catalytic activity was maintained more than the third cycle.

Cathode Catalyst of Direct Borohydride/Hydrogen Peroxide Fuel Cell for Space Exploration (우주탐사용 직접 수소화붕소나트륨/과산화수소 연료전지의 환원극 촉매)

  • YU, SU SANG;OH, TAEK HYUN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.444-452
    • /
    • 2020
  • This study investigated the cathode catalyst of direct borohydride/hydrogen peroxide fuel cells for space exploration. Various catalysts such as Au, Ag, and Ni were supported on multiwalled carbon nanotubes (MWCNTs). Various techniques, such as transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and X-ray diffraction were conducted to investigate the characteristics of the catalysts. Fuel cell tests were performed to evaluate the performance of the catalysts. Ag/MWCNTs exhibited better catalytic activity than the Ni/MWCNTs and better catalytic selectivity of the Au/MWCNTs. Ag/MWCNTs presented good catalytic activity and selectivity even at an elevated operating temperature. The performance of Ag/MWCNTs was also stable for up to 60 minutes.

Electrocatalyst for the Oxygen Reduction Reaction: from the Nanoscale to the Macroscale

  • Chung, Dong Young;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.65-72
    • /
    • 2014
  • The use of nanoscale electrocatalysts is a promising strategy for achieving high catalyst activity due to their large surface area. However, catalyst activity is not directly correlated to particle size. To understand this discrepancy, many studies have been conducted, but a full understanding has still not been achieved, despite the importance of particle size effects in designing an active catalyst. In this review, we focus on the discussion of particle size effects on the oxygen reduction reaction, and also discussed the nanoscale design beyond the nanoparticle to the meso and macroscale design.