DOI QR코드

DOI QR Code

Recyclable Porphyrin Catalyst with Core-shell Nanostructure

  • Choi, Bo-Gyu (Department of Chemistry, Division of Nano Sciences, Ewha Womans University) ;
  • Ko, Soo-Y. (Department of Chemistry, Division of Nano Sciences, Ewha Womans University) ;
  • Nam, Won-Woo (Department of Chemistry, Division of Nano Sciences, Ewha Womans University) ;
  • Jeong, Byeong-Moon (Department of Chemistry, Division of Nano Sciences, Ewha Womans University)
  • Published : 2005.11.20

Abstract

In the search for a simple preparation method of heterogeneous catalyst, the iron porphyrins were coordinated bonded to the surface of a polymeric core-shell nanosphere. The heterogeneous catalyst was characterized by FT-IR, scanning electron microscope, and UV-vis spectrophotometer. The iron porphyrin bound core-shell nanospheres was about 470 nm in diameter and their catalytic activity for cyclohexene oxidation was similar to a homogeneous iron porphyrin in a solvent composition range of 25-75% acetonitrile/water (v/v). In addition, they could be recovered by simple centrifugation and their catalytic activity was maintained more than the third cycle.

Keywords

References

  1. Merrifield, R. B. Angew. Chem. 1985, 97, 801 https://doi.org/10.1002/ange.19850971004
  2. Bergbreiter, D. E. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2351 https://doi.org/10.1002/pola.1212
  3. Fujita, M.; Costas, M.; Que, L. Jr. J. Am. Chem. Soc. 2003, 125, 9912 https://doi.org/10.1021/ja029863d
  4. de Visser, S. P.; Kaneti, J.; Neumann, R.; Shaik, S. J. Org. Chem. 2003, 68, 2903 https://doi.org/10.1021/jo034087t
  5. Choi, B. G.; Song, R.; Nam, W.; Jeong, B. Chem. Commun. 2005, 23, 2960
  6. Saltzman, H.; Sharefkin, J. G. Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, p 658
  7. Makino, K.; Yamamoto, S.; Fujimoto, K.; Kawaguchi, H.; Ohshima, H. J. Colloid Interface Sci. 1994, 166, 251 https://doi.org/10.1006/jcis.1994.1291
  8. Duracher, D.; Sauzedde, F.; Elaissari, A.; Perrin, A.; Pichot, C. Colloid Polym. Sci. 1998, 276, 219 https://doi.org/10.1007/s003960050232
  9. Nam, W.; Oh, S.-Y.; Sun, Y. J.; Kim, J.; Kim, W. K.; Woo, S. K.; Shin, W. J. Org. Chem. 2003, 68, 7903 https://doi.org/10.1021/jo034493c
  10. Seong, H.; Lee, H.; Park, K. J. Biomater. Sci. Polymer Ed. 2002, 13, 637 https://doi.org/10.1163/156856202320269139
  11. Martin, A.; Swarbrick, J.; Cammarata, A. Physical Pharmacy, 3rd ed.; Lea & Febiger: Philadelphia, 1983; p 335
  12. Wang, G.; Kuroda, K.; Enoki, T.; Grosberg, A.; Masamune, S.; Oya, T.; Takeoka, Y.; Tanaka, T. Proc. Nat'l. Acad. Sci. USA 2000, 97, 9861
  13. Yu, X.-Q.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2000, 122, 5337 https://doi.org/10.1021/ja000461k
  14. Liu, C.-J.; Yu, W.-Y.; Li, S.-G.; Che, C.-M. J. Org. Chem. 1998, 63, 7364 https://doi.org/10.1021/jo981003l

Cited by

  1. Organic Photocatalysts for the Oxidation of Pollutants and Model Compounds vol.112, pp.3, 2012, https://doi.org/10.1021/cr2000543
  2. -type metalloporphyrins in cyclohexane oxidation vol.92, pp.1, 2014, https://doi.org/10.1139/cjc-2013-0400
  3. Silica-Polystyrene Hybrid Core/Shell Microparticles of Rhodium-Chiral Diene Complexes as Catalysts for Asymmetric 1,4-Addition Reactions vol.11, pp.None, 2021, https://doi.org/10.1021/acscatal.1c04539