• Title/Summary/Keyword: cascaded transformers

Search Result 21, Processing Time 0.021 seconds

Reduction of Components in Cascaded Transformer Multilevel Inverter Using Two DC Sources

  • Banaei, Mohamad Reza;Salary, Ebrahim;Alizadeh, Ramin;Khounjahan, Hossein
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.538-545
    • /
    • 2012
  • In this paper a novel cascaded transformer multilevel inverter is proposed. Each basic unit of the inverter includes two DC sources, single phase transformers and semiconductor switches. This inverter, which operates as symmetric and asymmetric, can output more number of voltage levels in the same number of the switching devices. Besides, the number of gate driving circuits is reduced, which leads to circuit size reduction and lower power consumption in the driving circuits. Moreover, several methods to determination of transformers turn ratio in proposed inverter are presented. Theoretical analysis, simulation results using MATLAB/SIMULINK and experimental results are provided to verify the operation of the suggested inverter.

The Study on the HBML Inverter Using the Cascaded Transformers (변압기 직렬구성을 이용한 HBML 인버터에 관한 연구)

  • 박성준;박노식;강필순;김광헌;임영철;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.334-340
    • /
    • 2004
  • In this paper, an efficient switching pattern to equalize the size of transformer is proposed for a multi-level inverter employing cascaded transformers. It is based on the prior selected harmonic elimination PWM(SHEPWM) method. Because the maximum magnetic flux imposed on each transformer becomes exactly equal each to each, all transformers can be designed with the same size regardless of their position. Therefore, identical full-bridge inverter units can be utilized, thus improving modularity and manufacturability. The fundamental idea of the proposed switching pattern is illustrated and then analyzed theoretically. The validity of the proposed switching strategy is verified by experimental results.

Dynamic Performance Analysis of Unified Power Quality Conditioner with Cascaded H-Bridges (다중브리지로 구성된 UPQC(Unified Power Quality Conditioner)의 동적 성능분석)

  • Han, Byung-Moon;Soh, Yong-Cheol;Kim, Hyun-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.94-102
    • /
    • 2006
  • This paper describes experimental analysis of UPQC, which is composed of cascaded H-bridges and single-phase multi-winding transformers. The operational characteristic was analyzed through experimental works with a scaled model, and simulations with PSCAD/EMTDC. The UPQC proposed in this paper can be directly connected to the distribution line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual UPQC system applicable for the actual distribution system.

The study on the HBML inverter using the cascaded transformers (동일한 변압기 사용을 위한 절연형 HBML 인버터)

  • Jeon Jang-Gun;Park Sung-Jun;Kim Kwang-Heon;Lim Young-Cheol;Ahn Jin-Woo;Shon Mu-Heon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1528-1530
    • /
    • 2004
  • In this paper, an efficient switching pattern to equalize the size of transformer is proposed for a multi-level inverter employing cascaded transformers. It is based on the prior selected harmonic elimination PWM(SHEPWM) method. Because the maximum magnetic flux imposed on each transformer becomes exactly equal each to each, all transformers can be designed with the same size regardless of their position. Therefore, identical full-bridge inverter units can be utilized, thus improving modularity and manufacturability. The fundamental idea of the proposed switching pattern is illustrated and then analyzed theoretically. The validity of the proposed switching strategy is verified by experimental results.

  • PDF

Cascaded-transformer-based 3$^{n-1}$+2 level PWM Inverter (다단 변압기 기반 3$^{n-1}$+2 레벨 PWM 인버터)

  • Kang, Feel-Soon;Park, Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.681-684
    • /
    • 2005
  • This paper presents a useful multilevel PWM inverter scheme based on a (3$^{n-1}$+2) level generation technique. It consists of a PWM inverter, an assembly of LEVEL inverters, and cascaded transformers. To produce high quality output voltage waves, it synthesizes a large number of output voltage levels using cascaded transformers, which have a series-connected secondary. By a suitable selection of secondary turn-ration of the transformer, the amplitude of an output voltage is appeared at the rate of an integer to an input dc source. Operational principles and analysis are illustrated in depth. The validity of the proposed system is verified through computer-aided simulations and experimental results using prototypes generation output voltages of an 11-level and a 29-level, respectively. And their results are compared with conventional counterparts.

  • PDF

Dynamic Performance Analysis of Unified Power Quality Conditioner with Cascaded H-Bridges (다중브리지로 구성된 UPQC(Unified Power Quality Conditioner)의 동적 성능분석)

  • Cho, Yun-Ho;Bae, Byung-Yeol;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.241-243
    • /
    • 2006
  • This paper describes experimental analysis of UPQC, which is composed of cascaded H-bridges and single-phase multi-winding transformers. The operational characteristic was analyzed through experimental works with a scaled model, and simulations with PSCAD/EMTDC. The UPQC proposed in this paper can be directly connected to the distribution line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual UPQC system applicable for the actual distribution system.

  • PDF

A New Family of Cascaded Transformer Six Switches Sub-Multilevel Inverter with Several Advantages

  • Banaei, M.R.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1078-1085
    • /
    • 2013
  • This paper presents a novel topology for cascaded transformer sub-multilevel converter. Eachsub-multilevel converter consists of two DC voltage sources with six switches to achieve five-level voltage. The proposed topology results in reduction of DC voltage sources and switches number. Single phase low frequency transformers are used in proposed topology and voltage transformation and galvanic isolation between load and sources are given by transformers. This topology can operate as symmetric or asymmetric converter but in this paper we have focused on symmetric state. The operation and performance of the suggested multilevel converter has been verified by the simulation results of a single-phase nine-level multilevel converter using MATLAB/SIMULINK.

A multilevel PWM Inverter for Harmonics Reduction (고조파 저감을 위한 다중 레벨 PWM 인버터)

  • Kang, Feel-Soon;Park, Sung-Jun;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.645-651
    • /
    • 2002
  • In this paper, a multilevel PWM inverter employing a cascaded transformer is presented to reduce the harmonics of output voltage and load currents. The proposed PWM inverter consists of two full-bridge modules and their corresponding transformers. The secondarics of each transformer are series-connected. So continuous output voltage levels can be synthesized from the suitable selection of the turns ratio of trasformer. And it appears an integral ratio to input DC source. Because of the cascaded connection of transformers, output filter inductor is not necessary. The operational principles and analysis are explained, and it is compared with a conventional isolated H-bridge PWM inverter. The validity of proposed multilevel inverter is verified through simulated and experimental waveform and their FFT results.

Experimental Operation Analysis of Unified Power Flow Controller with Cascaded H-Bridge Modules (다계 H-브리지 모듈로 구성된 UPFC(Unified Power Flow Compensator)의 실험적 동작분석)

  • Baek, Seung-Taek;Bae, Byung-Yeol;han, Byung-Moon;Baek, Doo-Hyun;Jang, Byung-Hoon;Yoon, Jong-Soo;Kim, Soo-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.389-391
    • /
    • 2005
  • This paper describes experimental analysis of UPFC, which is composed of cascaded H-bridge modules and single-phase multi-winding transformers for isolation. The operational characteristic was analyzed through experimental works with a scaled model, and simulation results with PSCAD/EMTDC. The UPFC proposed In this paper can be directly connected to the transmission line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual UPFC system applicable for the transmission system.

  • PDF

Switching signal of Cascaded HBML inverter employing the identical Transformer (동일한 변압기 용량을 갖는 직렬형 HBML 인버터의 스위칭 신호)

  • Lee, S.H.;Park, S.J.;Moon, C.J.;Ahn, J.W.;Gwon, S.J.;Lee, M.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.651-654
    • /
    • 2005
  • In this paper, an efficient switching pattern to equalize the size of transformer is proposed for a multi-level inverter employing cascaded transformers. It is based on the prior selected harmonic elimination PWM(SHEPWM) method. Because the maximum magnetic flux imposed on each transformer becomes exactly equal each to each, all transformers can be designed with the same size regardless of their position. Therefore, identical full-bridge inverter units can be utilized, thus improving modularity and manufacturability. The fundamental idea of the proposed switching pattern is illustrated and the analyzed theoretically. The validity of the proposed switching strategy is verified by experimental results.

  • PDF