• Title/Summary/Keyword: carrier film

검색결과 734건 처리시간 0.037초

Study on Growth and Opto-Electrical Characterization of $CdS_{1-x}Se_{x}$ Thin Film using Chemical Bath Deposition Method (CBD 방법에 의한 $CdS_{1-x}Se_{x}$ 박막의 열처리에 따른 광전기적 특성)

  • Hong, K.J.;Choi, S.P.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;KIm, T.S.;Moon, J.D.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • 제4권1호
    • /
    • pp.51-63
    • /
    • 1995
  • Polycrystalline $CdS_{1-x}Se_{x}$ thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study $CdS_{1-x}Se_{x}$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, CdSe samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure which had the lattice constant $a_{0}=4.1364{\AA}$, $c_{0}=6.7129{\AA}$ in CdS and $a_{0}=4.3021{\AA}$, $c_{0}=7.0142{\AA}$ in CdSe, respectively. Hall effect on these samples was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity(${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Behavior of Retinal Pigment Epithelial Cells Cultured on Silk Films (실크필름에 배양한 망막색소상피세포의 거동)

  • Lee, So Jin;Kim, Hye Yun;Kim, Seul Ji;Yang, Jaewon;Lee, Seon Ui;Park, Chan Hum;Joo, Choun-Ki;Khang, Gilson
    • Polymer(Korea)
    • /
    • 제38권3호
    • /
    • pp.364-370
    • /
    • 2014
  • The retinal pigment epithelium (RPE) plays an important role in maintaining a healthy retina and the degeneration of RPE caused a number of retinal diseases. The transplantation of RPE has recently become a possible therapeutic modality for retinal degeneration. To transplant RPE cells securely, substrates are essential, and then as a substrate, we fabricated films using silk that has unique mechanical properties and biocompatibility. After the FTIR spectra, contact angle and biodegradation of silk films were confirmed, RPE cells were seeded and the influence of RPE cells on silk films was examined. We measured the cell adhesion, cell viability, morphology and specific mRNA expression by MTT assay, SEM, immunofluorescence and RT-PCR. In this study, we confirmed that attachment, proliferation and phenotype maintenance of RPE cells cultured on silk films were great, and thereby we were able to confirm the potential applications of silk films as tissue engineering carrier for regeneration of retina.

Surface Chemistry in Biocompatible Nanocolloidal Particles (생체 적합한 나노입자와 계면화학)

  • Kim Jong-Duk;Jung Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제30권3호
    • /
    • pp.295-305
    • /
    • 2004
  • Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • 제17권4호
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

Growth and Optical Conductivity Properties for BaAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaAl2Se4 단결정 박막 성장과 광전도 특성)

  • Jeong, Junwoo;Lee, Kijung;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • 제24권6호
    • /
    • pp.404-411
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaAl_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaAl_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaAl_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.29{\times}10^{-16}cm^{-3}$ and $278cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaAl_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.4205eV-(4.3112{\times}10^{-4}eV/K)T^2/(T+232 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaAl_2Se_4$ have been estimated to be 249.4 meV and 263.4 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n =1 and $C_{31}$-exciton peaks for n=31.

Growth of Thin Film Using Chemical Bath Deposition Method and Their Photoconductive Characteristics (CBD 방법에 의한 CdS 박막의 성장과 광전도 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeoung, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • 제2권1호
    • /
    • pp.3-10
    • /
    • 1993
  • Polycrystalline CdS thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdS polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdS samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure whose lattice constants $a_{o}$ and $c_{o}$ were $4.1364{\AA}$ and $6.7129{\AA}$, respectively. Its grain size was about $0.35{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility defending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33K and 150k and by polar optical scattering at temperature range of 150K and 293K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Characterization of CdSe Thin Film Using Chemical Bath Deposition Method (Chemical Bath Deposition 방법으로 제작한 CdSe 박막의 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • 제2권1호
    • /
    • pp.81-86
    • /
    • 1993
  • Polycrystalline CdSe thin films were grown on ceramic substrate using a chemical bath deposition (CBD) method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdSe polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdSe samples annealed in $N_{2}$ gas at $450^{\circ}C$ it was found hexagonal structure whose lattice parameters $a_{o}$ and $c_{o}$ were $4.302{\AA}$ and $7.014{\AA}$, respectively. Its grain size was about $0.3{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33 K and 200 K, and by polar optical scattering at temperature range of 200 K and 293 K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

The electrical and optical properties of the Ga-doped ZnO thin films grown on transparent sapphire substrate (투명 사파이어 기판위에 성장시킨 Ga-doped ZnO 박막의 전기적·광학적 특성)

  • Chung, Yeun Gun;Joung, Yang Hee;Kang, Seong Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제17권5호
    • /
    • pp.1213-1218
    • /
    • 2013
  • In this study, Ga-doped ZnO (GZO) thin films were fabricated on transparent sapphire substrate by RF magnetron sputtering method and then investigated the effect of various substrate temperature on the electrical, optical properties and characteristic of crystallization of the GZO thin films. The electrical property indicated that the lowest resistivity ($4.18{\times}10^{-4}{\Omega}cm$), the highest carrier concentration ($6.77{\times}10^{20}cm^{-3}$) and Hall mobility ($22cm^2/Vs$) were obtained in the GZO thin film fabricated at $300^{\circ}C$. And for this condition, the highest c-axis orientation and (002) diffraction peak which exhibits a FWHM of $0.34^{\circ}$ were obtained. From the results of AFM measurements, it is known that the highest crystallinity is observed at $300^{\circ}C$. The transmittance spectrum in the visible range was approximately 80 % regardless of substrate temperature. The optical band-gap showed the blue-shift as increasing the substrate temperature to $300^{\circ}C$, and they are all larger than the band gap of bulk ZnO (3.3 eV). It can be explained by the Burstein-Moss effect.

Facilitated Oxygen Transport through a Polyethersulfone Membrane Containing Cobalt Tetraphenylporphyrin-Benzylimidazole (Cobalt Tetraphenylporphyrin-benzylimidazole을 포함한 산소 촉진수송막)

  • Lee, Seung Hwan;Park, Se Hyung;Park, Jung Hoon
    • Membrane Journal
    • /
    • 제28권6호
    • /
    • pp.424-431
    • /
    • 2018
  • The gas separation performance of a mixed membrane structure based on a mixture of polyethersulfone (PES) and cobalt tetraphenylporphyrin-benzylimidazole (CoTpp-BIm) as an oxygen carrier was investigated. The CoTpp-BIm mixed PES membrane had an asymmetric structure with a mixture of finger structure and sponge-like structure, and the upper surface was dense. The gas separation performance test was carried out using $94%\;N_2$ gas and $6%\;O_2$ mixed gas. Oxygen and nitrogen permeability coefficients were measured at ${\Delta}P$ ranging from 15 to 228 cmHg and the permeate side of the PES membrane was maintained at vacuum level. The oxygen permeability coefficient of CoTpp-BIm mixed PES membranes increased as supplied pressure was decreased. When the supply pressure was 15 cmHg, the gas permeability ($P_{O_2}$) was 6676 Barrer, the $O_2/N_2$ selectivity (${\alpha}$) was 6.1, and the promoting factor (F) was 2.39. Based on these results, it was confirmed that the addition of CoTpp-BIm to the PES film improved the oxygen separation characteristics.

Molten-Salt-Assisted Chemical Vapor Deposition for Growth of Atomically Thin High-Quality MoS2 Monolayer (용융염 기반의 화학기상증착법을 이용한 원자층 두께의 고품질 MoS2 합성)

  • Ko, Jae Kwon;Yuk, Yeon Ji;Lim, Si Heon;Ju, Hyeon-Gyu;Kim, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • 제22권2호
    • /
    • pp.57-62
    • /
    • 2021
  • Recently, the atomically thin two-dimensional transition-metal dichalcogenides (TMDs) have received considerable attention for the application to next-generation semiconducting devices, owing to their remarkable properties including high carrier mobility. However, while a technique for growing graphene is well matured enough to achieve a wafer-scale single crystalline monolayer film, the large-area growth of high quality TMD monolayer is still a challenging issue for industrial application. In order to enlarge the size of single crystalline MoS2 monolayer, here, we systematically investigated the effect of process parameters in molten-salt-assisted chemical vapor deposition method. As a result, with optimized process parameters, we found that single crystalline monolayer MoS2 can be grown as large as 420 ㎛.