DOI QR코드

DOI QR Code

Molten-Salt-Assisted Chemical Vapor Deposition for Growth of Atomically Thin High-Quality MoS2 Monolayer

용융염 기반의 화학기상증착법을 이용한 원자층 두께의 고품질 MoS2 합성

  • Ko, Jae Kwon (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Yuk, Yeon Ji (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Lim, Si Heon (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Ju, Hyeon-Gyu (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Hyun Ho (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 고재권 (금오공과대학교 신소재공학부) ;
  • 육연지 (금오공과대학교 신소재공학부) ;
  • 임시헌 (금오공과대학교 신소재공학부) ;
  • 주현규 (금오공과대학교 신소재공학부) ;
  • 김현호 (금오공과대학교 신소재공학부)
  • Received : 2021.03.31
  • Accepted : 2021.05.04
  • Published : 2021.06.30

Abstract

Recently, the atomically thin two-dimensional transition-metal dichalcogenides (TMDs) have received considerable attention for the application to next-generation semiconducting devices, owing to their remarkable properties including high carrier mobility. However, while a technique for growing graphene is well matured enough to achieve a wafer-scale single crystalline monolayer film, the large-area growth of high quality TMD monolayer is still a challenging issue for industrial application. In order to enlarge the size of single crystalline MoS2 monolayer, here, we systematically investigated the effect of process parameters in molten-salt-assisted chemical vapor deposition method. As a result, with optimized process parameters, we found that single crystalline monolayer MoS2 can be grown as large as 420 ㎛.

원자층 두께의 이차원 전이금속 칼코겐화합물은 그래핀과 비슷한 형태의 이차원 구조로 이루어져 있으며, 전기적 특성을 비롯한 우수한 물리적특성을 보여 차세대 반도체 물질로 각광받고 있다. 그래핀의 대면적 합성의 경우 이미 기술적으로 성숙되어 화학기상 증착법을 이용하여 웨이퍼 수준의 크기만큼 단결정 합성이 가능해졌으나, 이차원 전이금속 칼코겐화합물의 경우 현재 수에서 수백 ㎛ 수준에 머물러 있는 것이 실정이다. 본 논문에서는 최근에 보고된 용융염 기반의 화학기상증착법을 통한 이차원 단층 MoS22합성법에서 공정변수가 MoS2단결정의 크기에 미치는 영향에 대해 조사하였다. 그 결과, 최적화된 조건에서 약 420 ㎛의 고품질 단층 단결정 MoS2가 합성될 수 있다는 사실을 광학 현미경, 원자력 현미경, 라만 분광, 그리고 광루미네선스 분광 분석을 통하여 밝혀내었다.

Keywords

Acknowledgement

이 연구는 금오공과대학교 학술연구비로 지원되었음(202001540001)

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol., 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199
  3. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  4. H. H. Kim, Y. Chung, E. Lee, S. K. Lee, and K. Cho, Adv. Mater., 26, 3213 (2014). https://doi.org/10.1002/adma.201305940
  5. Y. Chung, H. Ho Kim, S. Lee, E. Lee, S. Won Kim, S. Ryu, and K. Cho, Sci. Rep., 5, 12575 (2015). https://doi.org/10.1038/srep12575
  6. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater., 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
  7. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett., 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
  8. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett., 108, 196802 (2012). https://doi.org/10.1103/physrevlett.108.196802
  9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol., 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  10. X. Qian, J. Liu, L. Fu, and J. Li, Science, 346, 1344 (2014). https://doi.org/10.1126/science.1256815
  11. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, J. Am. Chem. Soc., 133, 7296 (2011). https://doi.org/10.1021/ja201269b
  12. Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng, H.-L. Luo, Y.-Q. Cai, G.-D. Liu, W.-J. Zhao, Z. Zhou, L.-M. Wu, Z.-L. Zhu, M. Huang, L.-W. Liu, L. Liu, P. Cheng, K.-H. Wu, S.-B. Tian, C.-Z. Gu, Y.-G. Shi, Y.-F. Guo, Z. G. Cheng, J.-P. Hu, L. Zhao, G.-H. Yang, E. Sutter, P. Sutter, Y.-L. Wang, W. Ji, X.-J. Zhou, and H.-J. Gao, Nat. Commun., 11, 2453 (2020). https://doi.org/10.1038/s41467-020-16266-w
  13. S. Hussain, J. Singh, D. Vikraman, A. K. Singh, M. Z. Iqbal, M. F. Khan, P. Kumar, D.-C. Choi, W. Song, K.-S. An, J. Eom, W.-G. Lee, and J. Jung, Sci. Rep., 6, 30791 (2016). https://doi.org/10.1038/srep30791
  14. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small, 8, 966 (2012). https://doi.org/10.1002/smll.201102654
  15. J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, and Z. Liu, Nature, 556, 355 (2018). https://doi.org/10.1038/s41586-018-0008-3
  16. J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.-W. Hwang, and D. Whang, Science, 344, 286 (2014). https://doi.org/10.1126/science.1252268
  17. J. S. Lee, S. H. Choi, S. J. Yun, Y. I. Kim, S. Boandoh, J.-H. Park, B. G. Shin, H. Ko, S. H. Lee, Y.-M. Kim, Y. H. Lee, K. K. Kim, and S. M. Kim, Science, 362, 817 (2018). https://doi.org/10.1126/science.aau2132
  18. H. Ye, J. Zhou, D. Er, C. C. Price, Z. Yu, Y. Liu, J. Lowengrub, J. Lou, Z. Liu, and V. B. Shenoy, ACS Nano, 11, 12780 (2017). https://doi.org/10.1021/acsnano.7b07604
  19. M. Mobin, A. U. Malik, and S. Ahmad, J. Less Common Met., 160, 1 (1990). https://doi.org/10.1016/0022-5088(90)90103-Q
  20. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater., 22, 1385 (2012). https://doi.org/10.1002/adfm.201102111