Surface Chemistry in Biocompatible Nanocolloidal Particles

생체 적합한 나노입자와 계면화학

  • Kim Jong-Duk (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung Jae Hyun (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • 김종득 (한국과학기술원(KAIST) 생명화학공학과) ;
  • 정재현 (한국과학기술원(KAIST) 생명화학공학과)
  • Published : 2004.11.01

Abstract

Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.

콜로이드와 계면화학은 표면적과 표면에너지의 학문이다. 계면상의 위치에 따라서 분자밀도, 분자간의 상호작용력, 분자 배향성 그리고 반응성이 달라진다는 것은 흥미있는 주제가 되고 있다. 이러한 계면에너지가 중요하게 작용하는 시스템으로서 회합체, 에멀젼, 입자분산, 거품, 2차원적 표면이나 필름을 들 수 있다. 특히 나노 입자에 관련된 생체 적합성 재료를 사용하여 약물 전달체와 화장품 나노 소재로 이용하는데 관심이 고조되고 있다. 나노 입자는 수 nm에서 수백 nm 크기를 갖는, 넓은 표면적을 가진 콜로이드 상의 불균일 분산 입자의 일종이다. 지금까지 나노 입자의 제조, 특성 규명, 나노입자를 이용한 약물 봉입에 관한 연구가 활발히 이루어져 약물 전달체로서의 가능성이 충분히 입증되었다. 또한 난용성분 가용화 나노소재, 피부 흡수 증진용 나노소재, 자외선 차단용 나노소재, 안정화용 나노소재, 서방형 나노소재 등의 화장품 연구에 생체적합 나노전달체를 이용한 예가 보고되었다. 나노/마이크로 입자 시스템은 제조방법과 형태에 따라 나노/마이크로 스피어, 나노/마이크로 캡슐, 나노/마이크로 에멀젼, 폴리머 마이셀, 리포좀 등으로 구분된다. 수용액상에서 자기 회합체를 구성하는 나노수준의 폴리머 마이셀입자, 고농도, 고활성 물질에 대하여 농도 및 활성을 일정하게 제어할 수 있는 나노/마이크로 캡슐, 단일 이중층 또는 다층(100~800 nm)을 형성하여 여러 생리 환성 물질의 전달체로 이용되는 리포솜(liposome)에 대하여 제조방법과 산업의 응용에 대해 소개하였다.

Keywords

References

  1. M. Faraday, Philos. Trans. R. Soc., 147, 145 (1857)
  2. 김종득, 계면현상론, 28, 도서출판 아르케, 서울 (2000)
  3. P. Alexandridis, U. Olsson, and B. Lindman, A reverse micellar cubic phase, Langmuir, 12, 1419 (1996)
  4. J. Th. G. Overbeek, Faraday Soc. Disc., 65, 7 (1978)
  5. J. K. Kim, S. H. Choi, C. O. Kim, J. S. Park, W. S. Ahn, and C. K. Kim, Enhancement of polyethylene glycol (PEG)-modified cationic liposome-mediated gene deliveries: effects on serum stability and transfection efficiency, J. Pharmacy and Pharmacology, 55(4), 453 (2003)
  6. J. C. Kim and J.-D. Kim, Temperature-sensitivity of liposomal lipid bilayers mixed with poly(N-isopro-pylacrylamide-co-acrylic acid), J. Biochemistry 121, 15 (1997)
  7. H. S. Kang, S. R. Yang, J.-D. Kim, S. H. Han, and I. S. Chang, Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly(aspartic acid), Langmuir, 17, 7501 (2001)
  8. D. T. Eddington and D. J. Beebe, Flow control with hydrogel, advanced drug delivery reviews, 56, 199 (2004)
  9. C. T. Kresge, M. E. Leowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Materials chemistry: macroporous crystalline vanadium oxide foam, Nature, 359, 710 (1992)
  10. 권경옥, 권영두, 김상진, 김주덕, 박성순, 이화순, 新化粧品學, 166, 도서출판 동화기술, 서울 (1993)
  11. 김강회, 이준우, 고병열, 생체고분자(polymeric biomaterials), 심층정보분석보고서 KISTI, 8, (2003)
  12. S. Dumitriu, Dermocosmetic applications of polymeric biomaterials, Polymeric Biomaterials, 459, 2nd Edition
  13. T. Miyamoto, S. Takahashi, H. Ito, H. Inagaki, Y. Noishiki, Tissue biocompatibility of cellulose and its derivatives, J. Biomed. Mater. Res., 23, 125 (1998)
  14. N. E. Larsen and E. A. Balazs, Drug delivery systems using hyaluronan and its derivatives, Adv. Drug Delivery Rev., 7, 279 (1991)
  15. S. Nilsson, A thermodynamic analysis of calciumalginate gel formation in the presence of inert electrolyte, Biopolymers, 32, 1311 (1992)
  16. W. Malette, H. Quigley, and E. Adickes, Chitosan effect in vascular surgery, tissue culture and tissue regeneration. In: Chitin in Nature and Technology, R. Muzzarelli, C. Jeuniaux, G. Gooday (Eds.). Plenum Press, New York, 435 (1986)
  17. W. H. Daly and D. Poche, The preparation of N-carboxyanhydrides of $\alpha$-amino acids using bis (trichloromethyl)carbonate, Tetrahedron Letters, 29(46), 5859 (1988)
  18. A. Harada and K. Kataoka, Formation of polyion complex micelles in an aqueous milieu from a pair of oppsitely-charged block copolymers with poly(ethylene glycol) segments, Macromolecules, 28, 5294 (1995)
  19. S. R. Yang, J. H. Jeong, K. Park, and J.-D. Kim, Self-aggregates of hydrophobically modified poly(2-hydroxyethyl aspartamide) in aqueous solution, Coll. & Polym Sci., 28, 1852 (2003)
  20. J. H. Jeong, H. S. Kang, S. R. Yang, and J.-D. Kim, Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(capro-lactone), Polymer, 44, 583 (2003)
  21. M. Vert, J. Mauduit, and L. Suming, Biodegradation of PLA/GA polymers: increasing complexity, Biomaterials, 15, 1209 (1994)
  22. F. S. Shahi and X. Han, Encapsulation of food ingredients, Cri. Rev. in food Sci. Nutrition, 33(6), 501 (1993)
  23. H. Y. Lee, S. J. Lee, I. W. Cheong, and J. H. Kim, Microencapsulation of fragrant oil via in situ polymerization: effects of pH and melamine-formaldehyde molar ratio, Journal of Microencapsulation, 19(5), 559 (2002)
  24. B. Y. Kim, H. S. Kang, and J. -D. Kim, Thermosensitive microparticles of PNIPAM grafted ethylcellulose by spray drying method, Journal of Microencapsulation, 19(5), 661 (2002)
  25. R. Arshady, Biodegradable Microcapsules - Basic Criteria and Properties, Microspheres Microcapsules and Liposomes, Citus Books, 2, 227 (1999)
  26. B. Y. Kim, Interaction of lectin-conjugated bioadhesive microparticles with mucin and their application to oral insulin delivery system, KAIST, Ph.D. thesis (2003)
  27. S. J. Lee, J. R. Jeong, S. C. Shin, Y. H. Chang, and J. D. Kim, Nanoparticles of magnetic ferric oxides encapsulated with PLGA and their application as MRI contrast agent, Journal of Magnetism and Magnetic Materials, 272-276, 2432 (2004)
  28. 심창구, 정연복, 강연숙, 약물송달학, 한림원, 207 (1998)
  29. L. Josephson, C. H. Tung, A. Moore, and R. Weissleder, High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates, Bioconjugate Chem, 10, 186 (1999)
  30. M. Lewin, N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, and R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nature Biotechnology, 18, 410 (2000)
  31. T. T. Shen, A. Bogdanov, A. Bogdanova, K. Poss, T. J. Brady, and R. Weissleder, Magnetically labeled secretin retains receptor affinity to pancreas Acinar Cells, Bioconjugate Chem, 7, 311 (1996)
  32. S. J. Lee, Y. H. Chang, Y. M. Huh, H. T. Song, J. S. Suh, and J. D. Kim, Intracellular translocation of superparamagnetic iron oxide nanoparticles encapsulated (IONE) with peptide-conjugated poly(D,L lactide-co-glycolide), 2004 CRS proceeding (2004)
  33. P. C. Hiemenz and R. Rajagopalan, Colloidal structure in surfactant solutions, in principles of colloid and surface chemistry, Marcel Dekker, 3rd Ed., New York
  34. R. Nagarajan and C. Ganesh, Block copolymer self-assembly in selective solvents: theory of solubilization in spherical micelles Macromolecules, 22, 4312 (1989)
  35. J. D. Kim, S. R. Yang, Y. W. Cho, and K. Park, Fast responsive nanoparticels of hydrophobically modified poly(amino acid)s and proteinoids, Reflexive Polymers and Hydrogels, CRS press, 373, (2004)
  36. A. Sharma and U. S. Sharma, Liposome in drug delivery: progress and limitation, Int. J. Pharm, 154, 123 (1998)
  37. A. S. L. Derycke and P. A. M. Witte, Liposomes for photodynamic therapy, Adv. Drug. Deliv. Rev., 56, 17 (2004)
  38. J. C. Kim, B. S. Kyoung, and J.-D. Kim, Temperature-sensitivity of liposomal lipid bilayers mixed with poly(N-isopropylacrylamide-co-acrylic acid), J. Biochemistry 121, 15 (1997)
  39. 김진웅, 한상훈, 장이섭, 강학희, 고기능성 화장품 산업에서의 나노기술 최근 연구 동향, Food Science and Industry, 35, 4 (2002)
  40. R. Arshady, Microspheres microcapsules & liposomes, Citus Books, London, (1999)
  41. P. Blecher, Liposome dermatics to come according to the patent literature, liposome dermatics, springer-verlag, Berlin, (1992)
  42. J. Y. Park, H. J. Choi, J. W. Shim, S. M. Ahn, J. Kim, and I. S. Chang, pH 감응형 나노입자를 이용한 멜라닌 합성저해 연구, 대한화장품학화지, 30(1), 29 (2004)