• 제목/요약/키워드: carrier film

검색결과 734건 처리시간 0.027초

Electrodeposition of SnS Thin film Solar Cells in the Presence of Sodium Citrate

  • Kihal, Rafiaa;Rahal, Hassiba;Affoune, Abed Mohamed;Ghers, Mokhtar
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.206-214
    • /
    • 2017
  • SnS films have been prepared by electrodeposition technique onto Cu and ITO substrates using acidic solutions containing tin chloride and sodium thiosulfate with sodium citrate as an additive. The effects of sodium citrate on the electrochemical behavior of electrolyte bath containing tin chloride and sodium thiosulfate were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were characterized by XRD, FTIR, SEM, optical, photoelectrochemical, and electrical measurements. XRD data showed that deposited SnS with sodium citrate on both substrates were polycrystalline with orthorhombic structures and preferential orientations along (111) directions. However, SnS films with sodium citrate on Cu substrate exhibited a good crystalline structure if compared with that deposited on ITO substrates. FTIR results confirmed the presence of SnS films at peaks 1384 and $560cm^{-1}$. SEM images revealed that SnS with sodium citrate on Cu substrate are well covered with a smooth and uniform surface morphology than deposited on ITO substrate. The direct band gap of the films is about 1.3 eV. p-type semiconductor conduction of SnS was confirmed by photoelectrochemical and Hall Effect measurements. Electrical properties of SnS films showed a low electrical resistivity of $30{\Omega}cm$, carrier concentration of $2.6{\times}10^{15}cm^{-3}$ and mobility of $80cm^2V^{-1}s^{-1}$.

An Analytical Model for the Threshold Voltage of Short-Channel Double-Material-Gate (DMG) MOSFETs with a Strained-Silicon (s-Si) Channel on Silicon-Germanium (SiGe) Substrates

  • Bhushan, Shiv;Sarangi, Santunu;Gopi, Krishna Saramekala;Santra, Abirmoya;Dubey, Sarvesh;Tiwari, Pramod Kumar
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.367-380
    • /
    • 2013
  • In this paper, an analytical threshold voltage model is developed for a short-channel double-material-gate (DMG) strained-silicon (s-Si) on silicon-germanium ($Si_{1-X}Ge_X$) MOSFET structure. The proposed threshold voltage model is based on the so called virtual-cathode potential formulation. The virtual-cathode potential is taken as minimum channel potential along the transverse direction of the channel and is derived from two-dimensional (2D) potential distribution of channel region. The 2D channel potential is formulated by solving the 2D Poisson's equation with suitable boundary conditions in both the strained-Si layer and relaxed $Si_{1-X}Ge_X$ layer. The effects of a number of device parameters like the Ge mole fraction, Si film thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been analyzed for gate-length ratio and amount of strain variations. The validity of the present 2D analytical model is verified with ATLAS$^{TM}$, a 2D device simulator from Silvaco Inc.

황화 암모늄을 이용한 Al2O3/HfO2 다층 게이트 절연막 트랜지스터 전기적 및 계면적 특성 향상 연구 (Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation)

  • 김준규;김대현
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.266-269
    • /
    • 2020
  • In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.

Relative Bioavailability of Coenzyme Q10 in Emulsion and Liposome Formulations

  • Choi, Chee-Ho;Kim, Si-Hun;Shanmugam, Srinivasan;Baskaran, Rengarajan;Park, Jeong-Sook;Yong, Chul-Soon;Choi, Han-Gon;Yoo, Bong-Kyu;Han, Kun
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.99-105
    • /
    • 2010
  • The purpose of this study was to evaluate relative bioavailability of the coenzyme Q10 (CoQ10) in emulsion and three liposome formulations after a single oral administration (60 mg/kg) into rats. Emulsion formulation of CoQ10 was prepared by conventional method using Phospholipon 85G as an emulsifier, and three liposome formulations (neutral, anionic, and cationic) of CoQ10 were prepared by traditional lipid film hydration technique using Phospholipon 85G, cholesterol, and charge carrier lipids (1,2-dioleoyl-3-trimethylammonium-propane chloride salt for cationic liposome and 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt for anionic liposome). Mean particle size of all CoQ10-loaded liposome was less than a micron, and size distribution of the liposome population was homogeneous. Bioavailability of CoQ10 in emulsion was 1.5 to 2.6-fold greater than liposome formulations in terms of $AUC_{0-24\;h}$. $T_{max}$ was 3 h when administered as emulsion while it was greater than 6 h in liposome formulations. Notably, it was approximately 8 h in cationic liposome. $C_{max}$ was highest in emulsion and was significantly decreased when administered as liposome. Charged liposome showed even lower $C_{max}$ than neutral liposome, especially in cationic liposome. In conclusion, therefore, it is suggested that clinicians and patients consider bioavailability issue a primary concern when choosing a CoQ10 product, especially when very high plasma level is required such as in the treatment of heart failure and Parkinson's disease.

전자빔 조사가 ZnO 박막의 전기적 특성 변화에 미치는 영향 (Influence of Electron Beam Irradiation on the Electrical Properties of ZnO Thin Film Transistor)

  • 최준혁;조인환;김찬중;전병혁
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.54-58
    • /
    • 2017
  • The effect of low temperature ($250^{\circ}C$) heat treatment after electron irradiation (irradiation time = 30, 180, 300s) on the chemical bonding and electrical properties of ZnO thin films prepared using a sol-gel process were examined. XPS (X-ray photoelectron spectroscopy) analysis showed that the electron beam irradiation decreased the concentration of M-O bonding and increased the OH bonding. As a result of the electron beam irradiation, the carrier concentration of ZnO films increased. The on/off ratio was maintained at ${\sim}10^5$ and the $V_{TH}$ values shifted negatively from 11 to 1 V. As the irradiation time increased from 0 to 300s, the calculated S. S. (subthreshold swing) of ZnO TFTs increased from 1.03 to 3.69 V/decade. These values are superior when compared the sample heat-treated at $400^{\circ}C$ representing on/off ratio of ${\sim}10^2$ and S. S. value of 10.40 V/decade.

펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 광학적 특성 (Growth and Optical Properties for ZnO Thin Film by Pulesd Laser Deposition)

  • 홍광준;김재열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.233-244
    • /
    • 2004
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$)substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}\;cm^{-3}$ and $299\;{\textrm}cm^2/V.s$ at 293K. respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;3.3973\;eV\;-\;(2.69{\times}10^{-4}\;eV/K)T^2/(T+463K)$. After the as-grown ZnO epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO atmospheres has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{zn},\;Vo,\;Zn_{int},\;and\;O_{int}$ obtained by PL measurements were classified as a donors or acceptors type. In addition, we concluded that the heat-treatment in the oxygen atmosphere converted ZnO thin films to an optical p-type. Also, we confirmed that vacuum in $ZnO/Al_2O_3$ did not form the native defects because vacuum in ZnO thin films existed in the form of stable bonds.

  • PDF

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • 강용수;박성희;이혜현;조영란;황종원;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

실리콘 이종접합 태양전지 특성에 대한 Zn 도핑된 ITO 박막의 일함수 효과 (Effect of Work Function of Zn-doped ITO Thin Films on Characteristics of Silicon Heterojunction Solar Cells)

  • 이승훈;탁성주;최수영;김찬석;김원목;김동환
    • 한국재료학회지
    • /
    • 제21권9호
    • /
    • pp.491-496
    • /
    • 2011
  • Transparent conducting oxides (TCOs) used in the antireflection layer and current spreading layer of heterojunction solar cells should have excellent optical and electrical properties. Furthermore, TCOs need a high work function over 5.2 eV to prevent the effect of emitter band-bending caused by the difference in work function between emitter and TCOs. Sn-doped $In_2O_3$ (ITO) film is a highly promising material as a TCO due to its excellent optical and electrical properties. However, ITO films have a low work function of about 4.8 eV. This low work function of ITO films leads to deterioration of the conversion efficiency of solar cells. In this work, ITO films with various Zn contents of 0, 6.9, 12.7, 28.8, and 36.6 at.% were fabricated by a co-sputtering method using ITO and AZO targets at room temperature. The optical and electrical properties of Zn-doped ITO thin films were analyzed. Then, silicon heterojunction solar cells with these films were fabricated. The 12.7 at% Zn-doped ITO films show the highest hall mobility of 35.71 $cm^2$/Vsec. With increasing Zn content over 12.7, the hall mobility decreases. Although a small addition of Zn content increased the work function, further addition of Zn content over 12.7 at.% led to decreasing electrical properties because of the decrease in the carrier concentration and hall mobility. Silicon heterojunction solar cells with 12.7 at% Zn-doped ITO thin films showed the highest conversion efficiency of 15.8%.

펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 열처리 효과 (Growth and Effect of Thermal Annealing for ZnO Thin Film by Pulsed Laser Deposition)

  • 홍광준
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.467-475
    • /
    • 2004
  • ZnO epilayer were synthesized by the pulsed laser deposition(PLD) process on $Al_2$ $O_3$substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire(A $l_2$ $O_3$) substrate at a temperature of 400 $^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are 8.27${\times}$$10^{16}$$cm^{-3}$ and 299 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}$(T)= 3.3973 eV - (2.69 ${\times}$ 10$_{-4}$ eV/K) $T^2$(T+463k). After the as-grown ZnO epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO atmospheres has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Zn}$ , $V_{o}$ , Z $n_{int}$, and $O_{int}$ obtained by PL measurements were classified as a donors or accepters type. In addition, we concluded that the heat-treatment in the oxygen atmosphere converted ZnO thin films to an optical p-type. Also, we confirmed that vacuum in ZnO/A $l_2$ $O_3$did not form the native defects because vacuum in ZnO thin films existed in the form of stable bonds.s.s.s.

펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 특성 (Growth and photocurrent properties for ZnO Thin Film by Pulsed Laser Deposition)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.74-75
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}cm^{-3}$ and $299cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 3.3973 eV - ($2.69{\times}10^{-4}$ eV/K)$T_2$/(T + 463 K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\triangle$so definitely exists in the $\ulcorner_6$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF