DOI QR코드

DOI QR Code

Influence of Electron Beam Irradiation on the Electrical Properties of ZnO Thin Film Transistor

전자빔 조사가 ZnO 박막의 전기적 특성 변화에 미치는 영향

  • Choi, Jun Hyuk (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Cho, In Hwan (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Chan-Joong (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute) ;
  • Jun, Byung-Hyuk (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute)
  • 최준혁 (한국원자력연구원 중성자응용기술부) ;
  • 조인환 (한국원자력연구원 중성자응용기술부) ;
  • 김찬중 (한국원자력연구원 중성자응용기술부) ;
  • 전병혁 (한국원자력연구원 중성자응용기술부)
  • Received : 2016.09.08
  • Accepted : 2016.10.15
  • Published : 2017.01.01

Abstract

The effect of low temperature ($250^{\circ}C$) heat treatment after electron irradiation (irradiation time = 30, 180, 300s) on the chemical bonding and electrical properties of ZnO thin films prepared using a sol-gel process were examined. XPS (X-ray photoelectron spectroscopy) analysis showed that the electron beam irradiation decreased the concentration of M-O bonding and increased the OH bonding. As a result of the electron beam irradiation, the carrier concentration of ZnO films increased. The on/off ratio was maintained at ${\sim}10^5$ and the $V_{TH}$ values shifted negatively from 11 to 1 V. As the irradiation time increased from 0 to 300s, the calculated S. S. (subthreshold swing) of ZnO TFTs increased from 1.03 to 3.69 V/decade. These values are superior when compared the sample heat-treated at $400^{\circ}C$ representing on/off ratio of ${\sim}10^2$ and S. S. value of 10.40 V/decade.

Keywords

References

  1. T. Atsushi, K. Masashi, O. Akira, O. Takeyoshi, O. Keita, O. Hideo, F. C. Shigefusa, and K. Masashi, Jpn. J. Appl. Phys., 44, L643 (2005). [DOI: https://doi.org/10.1143/JJAP.44.L643]
  2. S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett., 93, 181106 (2008). [DOI: https://doi.org/10.1063/1.3012579]
  3. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth, 225, 110 (2001). [DOI: https://doi.org/10.1016/S0022-0248(01)00830-2]
  4. A. Janotti and C.G.V. Walle, Phys. Rev. B, 76, 165202 (2007). [DOI: https://doi.org/10.1103/PhysRevB.76.165202]
  5. Y. T. Parabhu, K. V. Rao, V.S.S. Kumar, and B. S. Kumari, Sci. Res., 2, 45 (2013).
  6. J.C.C. Fan and J. B. Goodenough, J. Appl. Phys., 48, 3524 (1997). [DOI: https://doi.org/10.1063/1.324149]
  7. T. Ishida, H. Kobayashi, and Y. Nakato, J. Appl. Phys., 73, 4344 (1993). [DOI: https://doi.org/10.1063/1.352818]
  8. B. D. Ahn, J. H. Lim, M. H. Cho, J. S. Park, and K. B. Chung, J. Phys. D: Appl. Phys., 45, 415307 (2012). [DOI: https://doi.org/10.1088/0022-3727/45/41/415307]
  9. S. Jeong, Y. Jeong, and J. Moon, J. Phys. Chem. C, 112, 11082 (2008). [DOI: https://doi.org/10.1021/jp803475g]
  10. S. Jeong, Y. Ha, J. Moon, A. Facchetti, and T. J. Marks, Adv. Mater., 22, 1346 (2010). [DOI: https://doi.org/10.1002/adma.200902450]
  11. T. H. Jeong, S. J. Kim, D. H. Yoon, W. H. Jeong, D. L. Kim, H. S. Lim, and H. J. Kim, Jpn. J. Appl. Phys., 50, 070202 (2011). [DOI: https://doi.org/10.7567/JJAP.50.70202]
  12. D. H. Yoon, S. J. Kim, W. H. Jeong, D. L. Kim, Y. S. Rim, and H. J. Kim, J. Cryst. Growth, 326, 171 (2011). [DOI: https://doi.org/10.1016/j.jcrysgro.2011.01.090]
  13. S. K. Jeong, M. H. Kim, S. Y. Lee, H. Seo, and D. K. Choi, Nano Res. Lett., 9, 619 (2014). [DOI: https://doi.org/10.1186/1556-276X-9-619]
  14. S. J. Kim, A. R. Song, S. S. Lee, S. Nahm, Y. Choi, S. Jeong, and K. B. Chung, J. Mater. Chem. C, 3, 1457 (2014). [DOI: https://doi.org/10.1039/C4TC02408G]
  15. B. D. Ahn, K. B. Chung, and J. S. Park, J. Elctroceram., 34, 229 (2015). https://doi.org/10.1007/s10832-014-9978-1