DOI QR코드

DOI QR Code

Electrical Properties of Yarned Carbon Nanotube Fiber Resistors

Yarned CNT Fiber 저항체의 전기적 특성

  • Lim, Youngtaek (School of Electrical Engineering, Inha University) ;
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 임영택 (인하대학교 전기공학과) ;
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2016.11.14
  • Accepted : 2016.12.01
  • Published : 2017.01.01

Abstract

CNT (carbon nanotube) resistors with low resistance and negative TCR (temperature coefficient of resistance) were fabricated with yarned CNT (carbon nanotube) fibers. The CNT fibers were prepared by yarning CNTs grown on the silicone substrate by CVD (chemical vapor deposition) method. The CNT resistors were fabricated by winding CNT fibers on the surface of ceramic rod. Both metal terminals were connected with the CNT fiber wound on the ceramic rod. We measured electrical resistance and thermal stability with the number of CNT fibers wound. The CNT resistor system shows linearly decreased resistance with the number of CNTs wound on the ceramic rod and saturated at 20 strands. The CNT resistor system has negative TCR between $-1,000{\sim}-2,000ppm/^{\circ}C$ and stable frequency properties under 100 kHz.

Keywords

References

  1. F. Galliana, P. P. Capra, and E. Gasparotto, Journal of measurement, 46, 1630 (2013). [DOI: http://dx.doi.org/10.1016/j.measurement.2012.11.031]
  2. F. Zandman, P. R. Simon, and J. Szwarc, Resistor theory and technology, 1st ed. (Vishy Inter technology Inc, Malvern, 2001) p. 76.
  3. J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999). https://doi.org/10.1021/ar9700365
  4. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, Science, 278, 100 (1997). [DOI: https://doi.org/10.1126/science.278.5335.100]
  5. P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotech., 1, 78 (2002). [DOI: https://doi.org/10.1109/TNANO.2002.1005429]
  6. E. Flahaut, R. Bacsa, A. Peigney, and C. Laurent, Chemical Communications, 12, 1442 (2003). [DOI: https://doi.org/10.1039/b301514a]
  7. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett., 68, 631 (1992). [DOI: https://doi.org/10.1103/PhysRevLett.68.631]
  8. C. Dekker, Physics Today, 52, 22 (1999). [DOI: https://doi.org/10.1063/1.882658]
  9. O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, and H. Warth, Polymer, 45, 739 (2004). [DOI: https://doi.org/10.1016/j.polymer.2003.12.013]
  10. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996). [DOI: https://doi.org/10.1126/science.273.5274.483]
  11. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Phys. Rev. Lett., 87, 256805-1 (2001). [DOI: https://doi.org/10.1103/PhysRevLett.87.256805]
  12. W. Lowrie, Fundamentals of Geophysics: (Cambridge University Press, Zurich, 2007) p. 254.
  13. B.N.J. Persson and N. D. Lang, Phys. Rev. B, 26, 5409 (1982). https://doi.org/10.1103/PhysRevB.26.5409
  14. H. Gerischer, J. Phys. Chem., 88, 6096 (1984). https://doi.org/10.1021/j150669a007
  15. W. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem., 98, 13669 (1994). https://doi.org/10.1021/j100102a038
  16. M. Zhang, K. R. Atkinson, and R. H. Baughman, Science, 306, 1358 (2004). [DOI: https://doi.org/10.1126/science.1104276]