• Title/Summary/Keyword: Frequency stability

Search Result 1,979, Processing Time 0.029 seconds

Analysis of Stability of PV System using the Eigenvalue according to the Frequency Variation and Requirements of Frequency Protection

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.480-485
    • /
    • 2012
  • Use of photovoltaic (PV) power generation system will become more widespread in the future due to anticipated cost reduction in PV technology. As the capacity of PV systems increases, a variation of power system frequency may prevent the stable output of PV system. However, the standard for the frequency protection of distributed generation in Korea Electric Power Corporation (KEPCO)'s rule does not include the setting of frequency protection. Therefore, this paper analyzes the correlation between the frequency protection requirements and the stability of grid-connected PV system for the adjustable operating setting of frequency protection. The distribution system interconnected with 3 MW PV system is modeled by Matlab/Simulink. The various values of frequency are simulated. For studied cases, the stability of PV system is analyzed. It is concluded that the setting of frequency protection is necessary to consider the stability of PV system.

High Frequency Switching and Stability of DC-DC Converters (DC-DC 콘버어터의 고주파화와 안정성)

  • Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.824-827
    • /
    • 1987
  • The miniturization of a DC-DC converter circuit in connection with the stability is investigated in this paper. As both the capacitance of the smoothing capacitor and the inductance of the reactor are reduced by raising the switching frequency, it is known that the stability of the buck converter declines with the switching frequency but the buck-boost converter has a nearly uniform stability. Furthermore, that in the frequency region above a certain switching frequency the buck-boost converter is suitable for the miniturization of circuit is cleared.

  • PDF

A Miniturization and Stability of DC-to-DC Converters (DC - DC콘버어터의 소형화와 안정성)

  • Kim, Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.528-533
    • /
    • 1988
  • The miniturization of a DC-to-DC converter in connection with the stability is investigated in this paper. As both the capacitance of the smoothing capacitor and the inductance of the reactor are reduced by rasing the switching frequency, it is known that the stability of the buck converter declines with the switching frequency but the buck-boost converter has a nearly uniform stability. Furthermore, that the buck-boost converter is suitable for the miniturization of circuit is cleared in the high frequency region above a certain switching frequency.

  • PDF

Analysis of Current Control Stability using PI Control in Synchronous Reference Frame for Grid-Connected Inverter with LCL Filter (LCL 필터를 사용하는 계통연계형 인버터의 동기좌표계 PI 전류제어 안정도 해석)

  • Jo, Jongmin;Lee, Taejin;Yun, Donghyun;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.168-174
    • /
    • 2016
  • In this paper, current control using PI controller in the synchronous reference frame is analyzed through the relationship among bandwidth, resonance frequency, and sampling frequency in the grid-connected inverter with LCL filter. Stability is investigated by using bode plot in frequency domain and root locus in discrete domain. The feedback variable is the grid current, which is regulated by the PI controller in the synchronous reference frame. System delay is modeled as 1.5Ts, which contains computational and PWM modulator delay. Two resonance frequencies are given at 815 Hz and 3.16 kHz from LCL filter parameters. Sufficient phase and gain margins can be obtained to guarantee stable current control, in case that resonance frequency is above one-sixth of the sampling frequency. Unstable current control is performed when resonance frequency is below one-sixth of the sampling frequency. Analysis results of stability from frequency response and discrete response is the same regardless of resonance frequency. Finally, stability of current control based on theoretical analysis is clearly verified through simulation and experiment in grid-connected inverters with LCL filter.

A Study on the measurement of frequency stability using beat frequency method (비트주파수 방식을 이용한 주파수 안정도 측정에 관한 연구)

  • 김영범;정낙삼
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.365-372
    • /
    • 1987
  • This paper describes the basic theory and construction of the frequency stability measurement system by beat frequency method, one kind of the accurate measurement technologies of frequency stability in time domain. The characteristics of the real system is also investigated.

  • PDF

Dynamic stability analysis of axially oscillating cantilever beams (축방향 왕복운동을 하는 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.469-474
    • /
    • 1996
  • Dynamic stability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived and transformed into non-dimensional ones. The equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the equations, the multiple scale perturbation method is employed to obtain a stability diagram. The stability diagram shows that relatively large unstable regions exist around the frequencies of the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the diagram is proved by direct numerical simulations of the dynamic system.

  • PDF

Stability Analysis of a Straight Pipe with Time Dependent Flow (내부에 변동하는 유동을 갖는 직선 파이프의 안정성 해석)

  • Hong, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.318-324
    • /
    • 2004
  • The stability of a simply supported straight pipe is investigated. The time dependent flow is assumed to vary harmonically about a constant mean velocity. Stability conditions and dynamic reponses of a governing equation are conducted by use of multiple scale mettled. Parametric resonances and combination resonances are investigated. Stability boundaries are analytically determined. The resulted stability conditions show that instabilities exist when the frequency of flow fluctuation is close to two times the natural frequency or to the sum of any two natural frequencies. In case that the fluctuated flow frequency is close to zero or to the difference of two natural frequencies, however, instabilities are not found up to the first order of perturbation. Stability charts are numerically Presented fir the first two vibration modes.

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.877-882
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam stucture is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively targe unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

  • PDF

Dynamic Stability Analysis of an Axially Accelerating Beam Structure (축 방향 가속을 받는 보 구조물의 동적 안정성 해석)

  • Eun, Sung-Jin;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1053-1059
    • /
    • 2005
  • Dynamic stability of an axially accelerating beam structure is investigated in this paper. The equations of motion of a fixed-free beam are derived using the hybrid deformation variable method and the assumed mode method. Unstable regions due to periodical acceleration are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the dimensionless acceleration, amplitude, and frequency. Also, buckling occurs when the acceleration exceeds a certain value. It is found that relatively large unstable regions exist around the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the stability diagram is confirmed by direct numerical integration of the equations of motion.

Stability and frequency response analysis of multipurpose vehicle using linear vehicle model (다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석)

  • Kim, B.K.;Kim, W.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF