• Title/Summary/Keyword: carrier film

Search Result 734, Processing Time 0.029 seconds

The Carrier Mechanism in the Disperse Dyeing of Poly(ethylene terephthalate) (폴리에스테르 섬유의 분산염색에 있어서 캐리어의 작용기구)

  • 이일건;윤남식;임용진
    • Textile Coloration and Finishing
    • /
    • v.2 no.4
    • /
    • pp.231-236
    • /
    • 1990
  • The diffusion coefficient of C.I. Disperse Red 4 in the dyeing of carrier-pretreated poly (ethylene terephthalate) film was Investigated by Sekido's film-rolled method. From the result it was shown that the diffusion coefficient increases exponentially with the content-ration of carrier in the film, and, for the films containing same concentration of carrier, the carrier effect was enhanced with the molar volume of the carriers. The greater carrier effect was accompanied by the decrease in diffusion activation energy and entropy, which shows that the carrier with larger molar volume plasticizes PET film to more extent.

  • PDF

GeTe Thin Film의 상 변화가 저항과 Carrier Concentration에 미치는 영향

  • Lee, Gang-Jun;Na, Hui-Do;Kim, Jong-Gi;Jeong, Jin-Hwan;Choe, Du-Jin;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.292-292
    • /
    • 2011
  • TFT (Thin Film Transistor)에서 공정을 단순화 시키고, 가격을 하락시키기 위해서는 Poly-Si을 대체할 물질이 필요하다. 이 연구에서는 Chalcogenide Material의 하나인 GeTe 박막을 이용하여 TFT Channel으로 사용 가능한 물질인지 알아보기 위하여 Post-Annealing을 한 뒤, 상 변화에 따른 박막의 저항 변화, Carrier Concentration (cm-3)과 Mobility (cm2V-1s-1)의 변화를 알아보았다. Sputtering을 이용하여 증착한 GeTe 100 nm Thin Film 위에 Sputtering을 이용하여 SiO2 5 nm를 Capping Layer로 증착한 후, Post-Annealing을 200$^{\circ}C$, 300$^{\circ}C$, 400$^{\circ}C$, 500$^{\circ}C$로 온도를 변화 시키며 진행하였고, 이로 인하여 GeTe Thin Film에 외부의 영향을 최소화 하였다. 먼저 GeTe Thin Film의 Sheet Resistance를 측정한 결과는 300$^{\circ}C$ 까지 낮은 Sheet Resistance의 거동을 보이며 반면, 400$^{\circ}C$ 이상이 되면 높은 Sheet Resistance의 거동을 보인다. Hall Measurement를 통해, Carrier Concentration과 Mobility를 알아보았다. Carrier Concentration은 온도가 증가하면 1E+19에서 1E+21 까지 증가하며, Mobility는 감소하는 경향을 보인다. 500$^{\circ}C$ Post-Annealed GeTe Thin Film에서는 Resistivity가 상당히 높아 4 Point Probe (Range : 1 mohm/sq~2 Mohm/sq)로 측정이 불가능하다. XRD로 GeTe Thin Film을 분석한 결과 as-grown, 200$^{\circ}C$, 300$^{\circ}C$에서는 Cubic의 결정 구조를 보이며, Sheet Resistance가 급격히 증가한 400$^{\circ}C$, 500$^{\circ}C$에서는 Rhombohedral의 결정구조를 보인다. GeTe Thin Film은 400$^{\circ}C$ 이상의 Post-Annealing 온도에서 cubic 구조에서 Rhombohedral 구조로 상 변화가 일어난다. 위 결과를 통해, 결정 구조의 변화가 GeTe Thin Film의 저항, Carrier Concentration과 Mobility에 밀접한 영향이 미치는 것을 확인하였다.

  • PDF

Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sn-doped ${In_2}{O_3}$Films (D.C. 마그네트론 반응성 스퍼터링법에 의한 Sn-doped ${In_2}{O_3}$ 박막의 밀도와 전기적 특성과의 관계)

  • 이정일;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.686-692
    • /
    • 2000
  • Tin-doped In2O3 (ITO) films were fabricated using a d.c. magnetron reactive sputteirng of a In-10 wt% Sn alloy target in an Ar and O2 gas mixture. To understand the behavior of the carrier mobility in ITO films with O2 partial pressure, the resistivity, carrier concentration and mobility, film density, and intrinsic stress in the films were measured with O2 partial pressure. It was found experimentally that the carrier mobility increased rapidly as the film density increased. In the ITO film with the density close to theoretical one, the mean free path was the same as the columnar diameter. This indicated that the mobility in ITO films was strongly influenced by the crystall size. However, in the case where the film density was smaller than a theoretical density, the mean free paths were also smaller the columnar diameter. It was analyzed that the electron scattering at pores and holes within the crystalline was the major obstacle for electron conduction in ITO films. The measurement of intrinsic stress in ITO films also made it clear that the density of ITO films was controlled by the bombardment of oxygen neutrals on the growing film.

  • PDF

A study on the improvement of coating film characteristic in arc spraying by using the inert gas (아크용사시 불활성가스에 의한 피막밀착강도 향상에 관한 연구)

  • 김영식;여욱종
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 1987
  • In this study, the experiments were carried out for the purpose of establishment of the arc sparing method which reducing oxides or oxide film by using the inert gas as the carrier gas of atomizing particles. Main results obtained are as follows; 1. Oxides and oxide film which lower the adhesion strength are largely reduced by using the inert gas as the carrier gas of atomizing particles, and adhesion strength of coating film are improved. 2. The coating film characteristics appear to be no difference between the inert gas arc spraying in air environment and that in argon gas environment. 3. Inert gas arc spraying using argon as the carrie gas has higher reduction rate of composition element in coating film than compressed air spraying does.

  • PDF

Manufacture Technology Development of Paper Mending Tape for Conservation of Archive Document (종이 기록물 보수용 안전 테이프 시제품 제조 기술 연구)

  • Shin, Joung-Soon;Yoo, Sun-Kyun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.41-53
    • /
    • 2011
  • For manufacturing the tape for repairing archival documents, we tested ten carrier candidates for selecting best material. The tensile strength, transmissivity, stability of deterioration, and processability were determined. Physical-chemical characteristics and stability of deterioration was best to the Hanji. Tensile strength and transmissivity was best in tracing paper, but was low in oil paper, white sketch paper, lyon coat paper. Synthetic carrier to tensile strength showed higher than paper carrier and to the transmissivity showed 2-8 times higher than paper carriers. The tracing paper to the transmissivity was 10 times higher than others. To determine characteristic of conservation to the selected carriers, stability of deterioration was examined at conditions of $90^{\circ}C$ for 15 days. Oil paper and white sketch paper turned strongly yellowish. Cellulopane, Felt, and Cpp film showed stable stability of deterioration, but deformation like wrinkles. PET film and Syntheletic film showed excellent conservation characteristics without any change of exterior. Test of adhesive uniform between carriers and adhesive processability was performed. PET film > Syntheletic film > Tracing Paper in order were determined. Ununiformal adhesive characteristics appeared to Hangi. Accordingly, we thought that Hanji as carrier material might be unsuitable because of low adhesive processability.

Characterization of carrier transport and trapping in semiconductor films during plasma processing

  • Nunomura, Shota;Sakata, Isao;Matsubara, Koji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.391-391
    • /
    • 2016
  • The carrier transport is a key factor that determines the device performances of semiconductor devices such as solar cells and transistors [1]. Particularly, devices composed of in amorphous semiconductors, the transport is often restricted by carrier trapping, associated with various defects. So far, the trapping has been studied for as-grown films at room temperature; however it has not been studied during growth under plasma processing. Here, we demonstrate the detection of trapped carriers in hydrogenated amorphous silicon (a-Si:H) films during plasma processing, and discuss the carrier trapping and defect kinetics. Using an optically pump-probe technique, we detected the trapped carriers (electrons) in an a-Si:H films during growth by a hydrogen diluted silane discharge [2]. A device-grade intrinsic a-Si:H film growing on a glass substrate was illuminated with pump and probe light. The pump induced the photocurrent, whereas the pulsed probe induced an increment in the photocurrent. The photocurrent and its increment were separately measured using a lock-in technique. Because the increment in the photocurrent originates from emission of trapped carriers, and therefore the trapped carrier density was determined from this increment under the assumption of carrier generation and recombination dynamics [2]. We found that the trapped carrier density in device grade intrinsic a-Si:H was the order of 1e17 to 1e18 cm-3. It was highly dependent on the growth conditions, particularly on the growth temperature. At 473K, the trapped carrier density was minimized. Interestingly, the detected trapped carriers were homogeneously distributed in the direction of film growth, and they were decreased once the film growth was terminated by turning off the discharge.

  • PDF

Three-Temperature Modeling of Carrier-Phonon Interactions in Thin GaAs Film Structures Irradiated by Picosecond Pulse Lasers

  • Lee Seong-Hyuk;Lee Jung-Hee;Kang Kwan-Gu;Lee Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1292-1301
    • /
    • 2006
  • This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.

Improvement in Characteristics of Thin Film Transistors by High Pressure Steam Annealing

  • Nagasawa, Y.;Yamamoto, N.;Chishina, H.;Ogawa, H.;Kawasaki, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.333-336
    • /
    • 2006
  • High Pressure Annealing System was developed to improve the characteristics of low-temperature poly-silicon thin film transistors.. (TFTs). The high-pressure steam annealing was applied to the poly-silicon film made by rapid thermal annealing method. The carrier lifetime was investigated by Microwave detection of the Photo-Conductive Decay and the increase of carrier lifetime which indicates the reduction of the defect was observed by high-pressure steam annealing of 1MPa 600C 1hour.

  • PDF

Microstructure and Properties of ITO and ITO/Ag/ITO Multilayer Thin Films Prepared by D.C. Magnetron Sputtering (D.C. 마그네트론 스퍼터링법으로 제조한 ITO 및 ITO/Ag/ITO 박막의 미세조직과 투명 전극 특성)

  • Choi, Yong-Lak;Kim, Seon-Hwa
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.490-496
    • /
    • 2006
  • ITO monolayer and ITO/Ag/ITO multilayer thin films are prepared by D.C. magnetron sputtering method. Ag layer was inserted for applying ITO to a flexible substrate at low temperature. Carrier concentration and carrier mobility of ITO and ITO/Ag/ITO thin films were measured, the transmittance of them also was done. The amorphous phase was confirmed to be combined in addition to (400) and (440) peaks from XRD result of ITO thin film. As the substrate temperature increased, the preferred orientation of (400) appeared. From the result of application of Ag layer at room temperature, the growth of columnar structure was inhibited, and the amorphous phase formed mostly. The ITO/Ag/ITO thin film represented the transmittance of above 80% when the thickness of Ag layer was 50 ${\AA}$, and the concentration of carrier increased up to above 10 times than that of ITO thin film. Finally, since very low resistance of 3.9${\Omega}/{\square}$ was observed, the effective application of low temperature process is expected to be possible for ITO thin film.

A Study on the Relationship between Oxygen and Carrier Concentration in a GZO Film on an Amorphous Structure (GZO 박막에 대한 비정질 구조에 따른 산소공공과 전하농도의 연관성에 대한 연구)

  • Kim, Do Hyoung;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.25-29
    • /
    • 2015
  • In this study, RF magnetron sputtering was used to investigate the relationship between oxygen vacancy and carrier concentration in a GZO film on an amorphous structure. RF power was fixed at 50W and Ar flow was changed on a glass plate to create a thin film at room temperature. The transmittance of Al-adopted amorphous GZO was measured at 85% or higher; therefore, the transmittance was shown to be outstanding in all films. The hall mobility was also shown to be higher at the film showing the high transmittance at a short-wavelength, whereas the optical energy gap was shown to be higher at the film with high oxygen vacancy. The oxygen vacancy at the amorphous oxide semi-conductor increased the optical energy gap while it was not directly involved in increasing the mobility. The oxygen vacancy increases the carrier concentration while lowering the quality of amorphous structure; such factor, therefore affected the mobility. The increase of amorphous property is a direct way to increase the mobility of amorphous oxide semi-conductor.