일부 기존 콘크리트 내에서 발견되는 에트린자이트(ettringite)와 사우마사이트(thaumasite)에 대하여 산출상태 및 화학성분을 조사하고, $Na_2SO_4$ 용액을 이용한 인공적인 변질 실험을 수행하여, 이들 광물의 특정 환경 조건하에서의 안정도와 콘크리트의 성능저하에 미치는 영향을 연구하였다. 에트린자이트와 사우마사이트의 형태 관찰과 성분분석을 위하여 전자현미경(SEM)을 통한 EDAX분석을 실시하였다. 에트린자이트는 시멘트 페이스트의 공간을 충진하거나, 시멘트 페이스트를 치환한 형태로 나타나며, 미세 균열이 에트린자이트로부터 시멘트 페이스트 내부로 전파되고 있음이 잘 관찰되었다. 에트린자이트는 특정 환경 조건하에서 사우마사이트와 트리클로로알루민산염(trichloroaluminate)으로 쉽게 전이되거나 분해되었다. 사우마사이트는 탈백운석화작용을 수반하는 탄산염 골재를 사용한 콘크리트와 탄산화가 진행된 해안지역의 콘크리트에서 에트린자이트와 수반되어 나타난다. 사우마사이트의 형성 조건은 에트린자이트와 유사한 조건에서 형성되는 것으로 생각되나, 에트린자이트가 먼저 형성된 후 치환작용에 의하여 에트린자이트/사우마사이트 고용체를 형성하는 것으로 생각된다. 콘크리트내의 에트린자이트는 염화물이 공급될 경우 염소가 에트린자이트의 황산염을 부분 또는 완전한 치환하여 에트린자이트와 유사한 결정구조를 가지는 트리클로로알루민산염으로 전이되며, 또한, 트리클로로알루민산염은 황산염이 다시 공급될 경우, 치환반응에 의하여 다시 에트린자이트로 전이되었다. 두 광물의 치환반응의 반응 경로는 용액내의 염소이온과 황산이온의 농도에 따르는 것으로 생각된다. 이상과 같이, 에트린자이트는 콘크리트 내에서 다양한 내외부적인 화학작용 따라 특징적인 산출 양상을 보이며, 주변 환경 조건에 따라 다른 광물로 전이되는 나타내었다. 이러한 연구결과, 에트린자이트의 생성에 따른 콘크리트의 성능저하는 그 광물학적 특성과 분포양상에 관련성을 가지는 것으로 나타났다.
[ $YBa_2Cu_3O_{7-y}$ ](123) powders were synthesized by the solid state reaction method using two different purity $BaCO_3$ powders (99.75% and 99.7% purity) and $Y_2O_3$ (99.9%) and CuO (99.9%) powders. The effect of $BaCO_3$ purity on the formation of a 123 phase and the superconducting properties were investigated. The mixtures of raw powders were calcined at temperature ranges of $800^{\circ}C-880^{\circ}C$ in air and finally made into a single grain samples by a melt processing with top seeding. It was found that a 123 phase was well formed at temperature above $870^{\circ}C$, but the purity effect on the 123 formation was negligible. The single-grain 123 samples prepared from the different $BaCO_3$ powders showed the same $T_c$ value of 90.5 K and similar $J_c$ values about $10^4\;A/cm^2$ at 0 T and 77 K, and $10^3\;A/cm^2$ at 2 T and 77 K. This result indicates that the low purity, cheap price $BaCO_3$ powder can be used as a raw material for the fabrication of single-grain, high-$J_c$ superconducting levitator.
탄산화에 미치는 온도의 영향에 대해서는 매우 상반된 2가지의 주장이 존재하는데, 온도증가는 탄산화 반응을 가속화시켜 탄산화 깊이를 증가시킨다는 주장과 탄산화 반응을 일으키는 최적의 온도조건이 있으며, 탄산화 깊이는 이러한 최적의 온도조건에서 가장 큰 값을 가진다는 주장이다. 일반적으로 탄산화는 시멘트 수화물 중 수산화칼슘과 이산화탄소의 화학반응으로 생성되는 것으로 알려져 왔고 많은 탄산화 연구들도 이에 집중되어 왔다. 그러나, 최근의 몇몇 연구에서는 수산화칼슘을 제외한 다른 시멘트 수화물도 탄산화 반응이 일어난다는 결과를 발표하고 있다. 본 연구에서는 온도의 탄산화에 미치는 영향을 파악하기 위하여 탄산화 온도에 따른 탄산화 깊이와 탄산화 반응물과 생성물에 대한 실험을 수행한다. 또한, 실험결과의 분석을 통하여 수산화칼슘이외의 수화생성물이 탄산화에 미치는 영향을 파악하고자 하였다. 탄산화 깊이는 페놀프탈레인 용액법으로 측정하였고, 탄산화 전후의 반응물과 생성물은 열중량분석기(Thermogravimetric analyzer)를 이용하여 측정하였다. 탄산화 온도가 $20^{\circ}C$에서 $30^{\circ}C$로 증가하면 탄산화 깊이가 크게 증가하였지만 온도가 $30^{\circ}C$에서 $40^{\circ}C$로 증가하면 탄산화 깊이가 거의 증가하지 않았다. 이것은 탄산화 반응에 대한 최적의 온도조건이 존재할 수 있다는 증거일 수 있다. 페놀프탈레인 용액법에 의한 탄산화 깊이는 수산화칼슘과 탄산칼슘의 양이 변화하여 교차하는 영역에 존재한다. 탄산화 온도 $30^{\circ}C$와 $40^{\circ}C$에서의 수산화칼슘 이외의 시멘트 수화물에 의해 생성된 탄산칼슘양은 온도가 증가하면 감소함을 관찰할 수 있었다.
본 연구에서는 바이오매스 및 플라스틱에 가스화 효율을 높이기 위한 탄산염 촉매 또는 Ni based 촉매를 혼합한 시료에 대하여, 고정층 반응기를 이용하여 급속 등온 열분해 실험을 수행하여, 생성된 가스의 온도, 시료 및 촉매의 영향에 관한 분석을 통하여, 최적의 수소 생성 수율을 얻고자 한다. 고위발열량 측정 결과, 바이오매스보다 플라스틱 폐기물의 발열량이 높아짐을 알 수 있었다. 원소분석 결과로부터 수소 함량은 플라스틱 시료가 더 높았다. 계산된 활성화 에너지는 촉매 적용에 의해 감소하였고, 5 wt% 이상의 경우에는 큰 변화를 보이지 않았다. 수소수율은 플라스틱 폐기물이 포함된 시료, 온도에 대해서는 대부분 높은 온도 범위에서 최대값이 얻어졌다. 또한 대부분의 시료에서 높은 혼합비를 갖는 조건의 수소수율이 가장 높은 결과를 보였으나, 5 wt% 이상의 조건에서는 촉매 혼합비 증가의 영향은 미비하여, 활성화 에너지의 결과와 잘 일치함을 확인하였다. 전체적으로 촉매 반응이 무촉매 반응에 비하여 높은 수소수율이 얻어졌다. 촉매 종류에 대하여, 탄산염 촉매인 $Na_2CO_3$ 및 $K_2CO_3$보다 Ni-$ZrO_2$ 촉매가 수소 생산을 위한 목적에 더 적합한 촉매임을 확인하였고, 본 연구로부터의 최대 수소수율을 위한 조건은 $900^{\circ}C$, 20 wt%의 Ni-$ZrO_2$(1:9) 촉매가 혼합된 Pitch Pine, Polyethylene 시료에 대하여 65.9 vol%의 높은 수소수율의 결과를 얻었다.
온실가스의 주요성분인 이산화탄소를 포집 및 회수하기 위해 세라믹 종이로 만든 허니컴에 $K_2CO_3$를 담지 시켜 이산화탄소 흡수특성을 알아보았다. $70^{\circ}C$, 66% RH 항온항습 조건에서 $K_2CO_3$를 담지 시킨 허니컴 흡수제의 이산화탄소 흡수량은 13.8 wt%를 나타내었다. 이러한 결과는 $K_2CO_3$ 담지율 17.6 wt%와 거의 동일한 수준으로서 허니컴 흡수제에 담지된 $K_2CO_3$의 흡수 반응이 원활하게 진행되었음을 확인할 수 있었다. 또한, 허니컴 흡수제를 충진한 반응기에 4.51% 이산화탄소와 수분 동시공급 또는 수분 선 공급 후 이산화탄소를 공급하여 $50{\sim}80^{\circ}C$ 범위에서 이산화탄소 흡수 후 파과특성을 분석하였다. 그 결과 수분을 먼저 공급한 후 건조된 이산화탄소를 공급했을 때 더욱 늦게 파괴되어 흡수 반응이 좋아짐을 알 수 있었다. 흡수제와 이산화탄소의 흡수 반응에서의 생성물인 $KHCO_3$는 $128^{\circ}C$에서 이산화탄소를 탈착하여 재생된다는 것을 Temperature Programmed Desorption (TPD)분석 결과를 통해 확인할 수 있었다.
본 연구에서는 제지슬러지소각재(PSA)와 세 가지 킬레이트제(fumarate, IDA, EDTA)를 가지고 간접탄산화에 의해 이산화탄소를 저장하고 탄산칼슘을 생성하는 실험을 진행하였다. Fumarate와 IDA를 용제로 사용하면 간접탄산화반응이 촉진되어 물을 사용했을 때보다 더 많은 양의 이산화탄소를 저장하였다. 0.1 M 농도의 fumarate와 IDA를 사용했을 때, 이산화탄소 저장량은 각각 63, $89kg-CO_2/ton-PSA$이었고, 탄산칼슘 생성량은 각각 144, $202kg-CaCO_3/ton-PSA$이었다. 그러나 EDTA를 용제로 사용한 경우에는 탄산화반응이 거의 진행되지 않았다. PSA로부터 칼슘용출효율은 킬레이트제의 농도가 높고 Ca-ligand 안정화상수가 클수록 증가하였다. 또한 탄산화효율도 Ca-ligand 안정화상수의 영향을 받았다. Ca-ligand 안정화상수가 클수록 P SA로부터 더 많은 칼슘이 용출되었지만, 이 값이 탄산칼슘의 안정화상수($10^{8.35}$)보다 크면 탄산화반응이 진행되기 어려웠다.
증류수 및 염산용액을 사용하여 용해 및 재결정화 공정을 통한 탄산리튬 내 황산이온(SO42-) 제거에 관한 연구를 진행하였다. 증류수를 사용하여 탄산리튬 용해 시 용액 온도가 감소할수록 탄산리튬의 용해량이 증가하여 2.5 ℃에서 약 1.50 wt.%의 용해량을 나타내었다. 또한 해당 탄산리튬 용해액을 사용하여 탄산나트륨을 첨가하며 재결정화할 경우, 온도 증가에 따라 재결정화율이 증가하여 95 ℃에서 49.00 %의 재결정화율을 나타내었다. 한편, 염산 용액을 사용한 탄산리튬 용해 시 반응 온도의 영향은 없었으며 염산농도가 증가함에 따라 탄산리튬의 용해량이 증가하여 2.0 M 염산 용액에서 7.10 wt.%를 나타내었다. 또한 이 용액을 사용하여 탄산나트륨을 첨가하며 재결정화를 진행하였을 때 반응 온도 70 ℃에서 탄산리튬의 재결정화율은 86.10 %이었고, 황산이온 제거율은 96.50 % 이상이었다. 이후 수세 과정을 통하여 재결정화된 탄산리튬으로부터 나트륨을 99.10 % 이상, 황산이온을 99.90 % 이상 제거하여 순도 99.10 %의 정제된 탄산리튬을 회수할 수 있었다.
본 연구에서는 석회석 미분말의 고온 열적 특성을 분석한 이후, 석회석 미분말을 다양한 조건에서 콘크리트에 혼입하였을 때 가열 후 잔류 압축강도에 대해 분석하였다. 이를 통해 석회석 미분말이 고온에서 콘크리트에 미치는 영향을 검토하였다. 석회석 미분말의 고온 열적 특성 결과, 석회석 분말은 900℃에서 탈 탄산화 반응이 일어나면서 열에 의해 CaCO3가 CaO로 분해되는 것을 관찰했으며, 온도가 높아질수록 석회석 분말이 점차 팽창하여 500℃ 이상의 온도부터 균열 또는 파쇄가 발생하는 것을 확인하였다. 석회석 미분말 혼입 콘크리트의 가열 후 잔류 기계적 물성을 분석한 결과, 300℃ 이하에서 시험체를 가열하면 콘크리트 내 수화물의 반응이 촉진되어 강도가 증가하였지만, 500℃ 이상의 온도로 가열한 경우 석회석 분말에 균열이나 파괴가 발생하여 콘크리트의 강도 특성이 저하시키는 것을 확인하였다.
백운석을 칼슘/마그네슘 화합물 소재로 활용하기 위해 마이크로웨이브 소성로(950 ℃, 60 min)을 이용하여 소성하여 고반응성 경소백운석(CaO·MgO)을 제조하였다. Hydration test(ASTM C 110) 기준에 따라 실험을 실시하였으며 수화 반응성 결과, 중 반응성(max 74.1 ℃, 5 min)으로 분석 되었다. 경소백운석의 수화 반응에 기초하여 경소백운석과 염(MgCl2·6H2O) (a) 1:1, (b) 1:1.5, (c) 1:2 wt%로 실험을 진행하였다. 염 첨가 비율이 증가 할수록 경소백운석의 MgO가 Mg(OH)2로 증가되는 것을 X-선 회절 분석 결과 확인하였다. 분리 반응 후 칼슘은 CaCl2 용액 상태로 80 ℃, 24 시간 동안 교반시켜 흰색 결정체인 CaCl2가 제조 되었다. XRD 분석 결과, CaCl2·(H2O)x(calcium chloride hydrate)로 경소백운석과 염 첨가 반응에 의한 CaO는 CaCl2로 분리 되는 것을 확인하였다. 그리고 CaCl2 용액에 NaOH 첨가 반응으로 순도 99 wt%의 Ca(OH)2 합성하였으며, 합성된 Ca(OH)2를 열처리 과정을 통하여 CaO를 제조하였다. 탄산칼슘을 제조하기 위해 CaCl2 용액에 Na2CO3 첨가 반응으로 CaCO3를 합성하였으며, 형상은 큐빅(cubic) 형태로 순도 99 wt%로 분석 되었다.
함동 장풍광산에서 산성 환경에 노출된 폐광석 원소의 지화학적 거동을 파악하기 위한 용출실험과 총함량 분석을 실시하였다. 주변의 오염되지 않은 토양 내의 원소 함량과 폐광석 내의 원소함량을 비교하였을 때, 농집이 많은 순서는 As>>Cu>Pb>Cd>Co이다. 산성비 ($0.00001{\sim}0.001N\;HNO_3$)와 산성배수($0.001{\sim}0.1N\;HNO_3$)를 고려한 산도변화에 따른 용출 실험 결과, 산용액과 24시간 반응한 후의 최종 pH 변화 형태를 3가지 유형으로 구분하였다. 산도를 더 낮아지게 할 수 있는 광물의 용해 작용으로 반응 용액의 pH보다 더 낮은 최종 pH를 나타내는 유형 1과 pH를 완충할 수 있는 광물이 존재하여 반응용액의 pH보다 높은 pH를 유지하는 유형 2.3으로 구분되었다. 원소의 용출거동 특성은 비소-코발트-철과 구리-망간-카드뮴-아연 그리고 납으로 구분할 수 있었다. 비소-코발트-철의 용출특성은 약산성의 환경에서는 용출이 미약하나, 최종 pH 1.5 이하의 강산성환경에서는 용출량이 급격하게 증가하며, 구리-망간-카드뮴-아연형태에서는 최초로 용해되는 pH가 $7.0{\sim}3.0$으로 pH $2.5{\sim}1.5$에게서 최초 용출이 발생하는 비소-코발트-철보다 높았다. 납은 원소에 비해 상당히 적게 용출되었다. 최종 용출된 함량과 관계없이 초기 용출이 발생하는 pH값을 기준으로 한 각 원소의 상대적인 이동성은 망간 아연>카드뮴>구리>>철 코발트>비소>납 순서이며, 산성비는 아연, 망간 및 구리를 쉽게 용출시킬 것이고, 산성광산배수의 발생은 이동도가 낮은 원소(비소, 철, 코발트 그리고 납)의 분산을 야기할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.