Characteristics of Elements Extraction in Waste Rocks on the Abandoned Jangpoong Cn Mine

장풍 동광산 폐광석 내 원소의 용출 특성

  • Lee, In-Gyeong (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 이인경 (충북대학교 지구환경과학과) ;
  • 최상훈 (충북대학교 지구환경과학과)
  • Published : 2008.12.28

Abstract

In order to evaluate the geochemical behaviors of elements with waste rocks in the abandoned Jangpoong Cu mine area, total concentration analysis and leaching experiments were performed. The content of elements within waste rocks compared with background values decreased in order of As>>Cu>Pb>Cd>Co. Leaching experiments were carried out at various extraction environments, considering the acid rain ($0.00001{\sim}0.001N\;HNO_3$) and the acid mine drainage ($0.001{\sim}0.1N$ HNO3). After 24 hours of reaction with different acidic solution, the leaching characteristics of waste rocks were classified into three types according to final pH of leaching solution. Type I refers to the case that the final pH of leaching solution was lower than that of the reaction solution due to the dissolution of acidic minerals from rocks, while type 2 and 3 refer to the case that the final pH maintained higher than that of the reaction solution. Theses types include in acid buffering minerals such as clay minerals and carbonate minerals. The leaching characteristics of the elements after the reaction could be categorized into As-Co-Fe, Cu-Mn-Cd-Zn, and Pb. As-Co-Fe started to get leached under 2.5 of pH regardless of changes in the final pH, and Cu-Mn-Cd-Zn showed different initial leaching pH according to the types of final pH changes. Based on the pH value where leaching started regardless of leaching concentration, the relative mobility of each element was in the order of Mn Zn>Cd>Cu>>Fe Co>As>Pb. Thus, more higher mobility elements(Zn, Mn and Cu) were leached by reacting with acid rain water. Acid mine drainage may result in distributions of elements having relatively less mobility(As, Fe, Co and Pb).

함동 장풍광산에서 산성 환경에 노출된 폐광석 원소의 지화학적 거동을 파악하기 위한 용출실험과 총함량 분석을 실시하였다. 주변의 오염되지 않은 토양 내의 원소 함량과 폐광석 내의 원소함량을 비교하였을 때, 농집이 많은 순서는 As>>Cu>Pb>Cd>Co이다. 산성비 ($0.00001{\sim}0.001N\;HNO_3$)와 산성배수($0.001{\sim}0.1N\;HNO_3$)를 고려한 산도변화에 따른 용출 실험 결과, 산용액과 24시간 반응한 후의 최종 pH 변화 형태를 3가지 유형으로 구분하였다. 산도를 더 낮아지게 할 수 있는 광물의 용해 작용으로 반응 용액의 pH보다 더 낮은 최종 pH를 나타내는 유형 1과 pH를 완충할 수 있는 광물이 존재하여 반응용액의 pH보다 높은 pH를 유지하는 유형 2.3으로 구분되었다. 원소의 용출거동 특성은 비소-코발트-철과 구리-망간-카드뮴-아연 그리고 납으로 구분할 수 있었다. 비소-코발트-철의 용출특성은 약산성의 환경에서는 용출이 미약하나, 최종 pH 1.5 이하의 강산성환경에서는 용출량이 급격하게 증가하며, 구리-망간-카드뮴-아연형태에서는 최초로 용해되는 pH가 $7.0{\sim}3.0$으로 pH $2.5{\sim}1.5$에게서 최초 용출이 발생하는 비소-코발트-철보다 높았다. 납은 원소에 비해 상당히 적게 용출되었다. 최종 용출된 함량과 관계없이 초기 용출이 발생하는 pH값을 기준으로 한 각 원소의 상대적인 이동성은 망간 아연>카드뮴>구리>>철 코발트>비소>납 순서이며, 산성비는 아연, 망간 및 구리를 쉽게 용출시킬 것이고, 산성광산배수의 발생은 이동도가 낮은 원소(비소, 철, 코발트 그리고 납)의 분산을 야기할 수 있을 것이다.

Keywords

References

  1. Ahn, J.S., Kim, J.Y., Cheon, C.M. and Moon, H.S. (2003) Mineralogical and chemical characterization of arsenic solid phases in weathered mine tailing and their leaching potential, Econ. Environ. Geol., v. 36, p. 27-38 https://doi.org/10.1007/s002540050317
  2. Blowes, D.W., Ptacek, C.J., Jambor, J.L. and Weisener, C.G. (2003) The geochemistry of acid mine drainage. In: Sherwood Lollar, B. (Ed.) Environmental Geochemistry. Holland, H.D., Turekian, K.K. (Exec. Eds.), Treatise on Geochemistry, v. 9. Elsevier, p. 149-204
  3. Strömberg, B. and Banwart, S.A. (1999) Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size. Applied Geochemistry, v. 14, p. 1-16 https://doi.org/10.1016/S0883-2927(98)00028-6
  4. Dold B. and Fontbote, L. (2002) A mineralogical and geochemical study of element mobility insulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile. Chemical Geology, v. 189, p. 135-163 https://doi.org/10.1016/S0009-2541(02)00044-X
  5. Frau F. and Ardau C. (2003) Geochemical controls on arsenic distribution in the Baccu Locci stream catchment (Sardinia, Italy) affected by past mining, Applied Geochemistry, v. 18, p. 1373-1386 https://doi.org/10.1016/S0883-2927(03)00057-X
  6. Jambor J.L. (1994) Mineralogy of sulfide rich tailings and their oxidation products. In:Jambor J. L., Blowes DW (eds) Environmental geochemistry of sulfide minewastes. Mineralogical Association of Canada Short Course 22, Mineralogical of Canada, Nepean, Canada, p. 59-102
  7. Sánchez España, J., López Pamo, E. and Santofimia Pastor, E. (2007) The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): Field and laboratory rates. Journal of Geochemical Exploration, v. 92, p. 120-132 https://doi.org/10.1016/j.gexplo.2006.08.010
  8. Kim, J.S., Han, S.H., Choi, S.H., Lee, K.J., Lee, I.G. and Lee, P.K. (2002) Correlation interpretation on the leachate flow by AMD of the geophysical and geochemical data from Jangpoong abandonded mine. Jour. of the Korean Geophysical Society, v. 5, p. 19-27
  9. Lee, I.G., Lee, P.K., Choi, S.H., Kim, J.S. and So, C.S. (2005) Chemical Speciation of Heavy Metals in Geologic Environments on the Abandoned Jangpoong Cu Mine Area, Econ. Environ. Geol., v. 38, p. 699-705
  10. Lee, P.K., Kang, M.J., Choi, S.H. and Touray, J.C. (2005) Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea, Applied Geochemistry, v. 20, p. 1687-1703 https://doi.org/10.1016/j.apgeochem.2005.04.017
  11. Lee, S.H. and Kim, J.H. (1972) Geological map of Korea: Goesan sheet (1:50,000), Geological survey of Korea, Seoul Korea