DOI QR코드

DOI QR Code

A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O)

염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구

  • Hwang, Dae Ju (Advanced Materials Team, Korea Institute of Limestone and Advanced Materials) ;
  • Yu, Young Hwan (Advanced Materials Team, Korea Institute of Limestone and Advanced Materials) ;
  • Cho, Kye Hong (Advanced Materials Team, Korea Institute of Limestone and Advanced Materials) ;
  • Lee, Jong Dae (Department Chemical Engineering of Chungbuk National University)
  • 황대주 ((재)한국석회석신소연구소, 첨단소재팀) ;
  • 유영환 ((재)한국석회석신소연구소, 첨단소재팀) ;
  • 조계홍 ((재)한국석회석신소연구소, 첨단소재팀) ;
  • 이종대 (충북대학교, 화학공학과)
  • Received : 2021.02.08
  • Accepted : 2021.03.17
  • Published : 2021.08.01

Abstract

In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 ℃, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 ℃, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 ℃, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.

백운석을 칼슘/마그네슘 화합물 소재로 활용하기 위해 마이크로웨이브 소성로(950 ℃, 60 min)을 이용하여 소성하여 고반응성 경소백운석(CaO·MgO)을 제조하였다. Hydration test(ASTM C 110) 기준에 따라 실험을 실시하였으며 수화 반응성 결과, 중 반응성(max 74.1 ℃, 5 min)으로 분석 되었다. 경소백운석의 수화 반응에 기초하여 경소백운석과 염(MgCl2·6H2O) (a) 1:1, (b) 1:1.5, (c) 1:2 wt%로 실험을 진행하였다. 염 첨가 비율이 증가 할수록 경소백운석의 MgO가 Mg(OH)2로 증가되는 것을 X-선 회절 분석 결과 확인하였다. 분리 반응 후 칼슘은 CaCl2 용액 상태로 80 ℃, 24 시간 동안 교반시켜 흰색 결정체인 CaCl2가 제조 되었다. XRD 분석 결과, CaCl2·(H2O)x(calcium chloride hydrate)로 경소백운석과 염 첨가 반응에 의한 CaO는 CaCl2로 분리 되는 것을 확인하였다. 그리고 CaCl2 용액에 NaOH 첨가 반응으로 순도 99 wt%의 Ca(OH)2 합성하였으며, 합성된 Ca(OH)2를 열처리 과정을 통하여 CaO를 제조하였다. 탄산칼슘을 제조하기 위해 CaCl2 용액에 Na2CO3 첨가 반응으로 CaCO3를 합성하였으며, 형상은 큐빅(cubic) 형태로 순도 99 wt%로 분석 되었다.

Keywords

References

  1. Hwang, D. J., Ryu, J. Y. and Park, J. H., "Calcination of Megacrystalline Calcite Using Microwave and Electric Furnaces," J. Ind. Eng. Chem., 18(6), 1956-1963(2012). https://doi.org/10.1016/j.jiec.2012.05.011
  2. Hwang, D. J., Ryu, J. Y. and Park, J. H., "Preparation of CaCO3 Using Mega-crystalline Calcite in Electrical Furnace and Batch Type Microwave Kiln," J. Ind. Eng. Chem., 19(5), 1507-1516(2013). https://doi.org/10.1016/j.jiec.2013.01.017
  3. Hwang, D. J., Ryu, J. Y. and Yu, Y. H., "Characteristics of Precipitated Calcium Carbonate by Hydrothermal and Carbonation Processes with Mega-crystalline Calcite Using Rotary Microwave Kiln," J. Ind. Eng. Chem., 20(5), 2727-2734(2014). https://doi.org/10.1016/j.jiec.2013.10.061
  4. Hwang, D. J. and Cho, K. H., "Effects of Sodium Dodecyl Benzenesulfonic Acid (SDBS) on the Morphology and the Crystal Phase of CaCO3", Korean J. Chem. Eng., 28(9), 1927-1935(2011). https://doi.org/10.1007/s11814-011-0044-2
  5. Bes, A. M., "Process Simulation of Limestone Calcination in Normal Shaft Kilns," Ottovon- Guericke University Magdeburg, Germany, 2006(Dr. -Ing. Thesis).
  6. Chatterjee, A., Basak, T. and Ayappa, K. G., "Analysis of Micro-Wave Sintering of Ceramics," J. AIChE, 44(10), 2302-2311(1998). https://doi.org/10.1002/aic.690441019
  7. Kenkre, V. M., Skala, L. and Weiser, M. W., "Theory of Microwave Interactions in Ceramic Materials: the Phenomenon of Thermal Runaway," J. Materials Science, 26, 2483-2489(1991). https://doi.org/10.1007/BF01130199
  8. Pawel, K., "A Model of Microwave Heating Effect Accounting for Cavity Radiative Heat Exchange," Proceedings of the 41st European Microwave Conference, Manchester, UK, 996-999(2011).
  9. Clemens, J. and Saltiel, C., "Numerical Modeling of Materials Processing in Microwave Furnaces," International J. Heat and Mass Transfer, 39(8), 1665-1675(1996). https://doi.org/10.1016/0017-9310(95)00255-3
  10. Brosnan, K. H. and Messing, G. L., "Microwave Sintering of Alumina at 2.45 GHz," J. Am. Ceram. Soc., 86(8), 1307-1312(2003). https://doi.org/10.1111/j.1151-2916.2003.tb03467.x
  11. Zhao, C. and Vleugels, J., "Hybrid Sintering with a Tubular Susceptor in a Cylindrical Single-mode Microwave Furnace," Acta Mater., 48, 3795-3801(2000). https://doi.org/10.1016/S1359-6454(00)00160-9
  12. Das, S. and Mukhopadhyay, A. K., "Prospects of Microwave Processing: An Overview," Bull. Mater. Sci., 32(1), 1-13(2009). https://doi.org/10.1007/s12034-009-0001-4
  13. Metaxas, A. C., "Microwave Heating," Power Engineering Journal., 5(5), 237-247(1991). https://doi.org/10.1049/pe:19910047
  14. Panda, S. S., Singh, V. and Upadhyaya, A., "Sintering Response of Austenitic (316L) and Ferritic (434L) Stainless Steel Consolidated in Conventional and Microwave Furnaces," Scripta Materialia., 54, 2179-2183(2006). https://doi.org/10.1016/j.scriptamat.2006.02.034
  15. Changhong, D., Xianpeng, Z. and Jinsong, Z., "The Synthesis of Ultrafine SiC Powder by the Microwave Heating Technique," Journal of Materials Science, 32, 2469-2472(1997). https://doi.org/10.1023/A:1018573611420
  16. Garcia-Carmona, J. and Gomez-Morales, J., "Morphological Characteristics and Aggregation of Calcite Crystals Obtained by Bubbling CO2 Through a Ca(OH)2 Suspension in the Presence of Additives," Powder Technology, 130, 307-315(2003). https://doi.org/10.1016/S0032-5910(02)00209-7
  17. Shin, B. C., "Preparation of Colloidal Calcium Carbonate by Carbonation Process," Ms.-Ing. Thesis, Department of Chemical Engineering Graduate School, Kangwon National University, Korea(2001).
  18. http://www.samyangcorp.com/CO43/Details/28?searchCate=1.
  19. Mochida, Y., Miyazawa, K. and Tazawa, M., "Changes of Dynamic Properties of Some Kaolin Minerals by Heat-treatment," J. Soc. Inor. Mater. Japan(Gypsum & Lime), 36, 20-25(1958).
  20. Kasai, J., "On Calcing Shringkage and Disolution Rate of Single Crystal of Gypsum," J. Soc. Inor. Mater. Japan(Gypsum & Lime), 63, 75-79(1968).
  21. Nishikawa, Y., "A Study Separation of Burning Dolomite in Sucrose Solution," J. Soc. Inor. Mater. Japan(Gypsum & Lime), 92, 7-14(1968).
  22. Nishino, T., "Separation of Ca and Mg from Dolomite by Ion Exchange Resin, and Basic Studies with High Advanced Usage," J. Soc. Inor. Mater. Japan(Gypsum & Lime), 248, 3-9(1994).
  23. Jackson, L. C., Levings, S. P. and Maniocha, M. L., Mintmirer., "Magnesium Compounds," In:Kroschwits, J.I. & Howe-Grant, M., eds., Kirk-Othmer Encyclopedia of chemical Technology, 3rd ed., Vol. 15, New York, John Wily & Sons, Inc., 675-722(1995).
  24. Lacson, J. G., Cometta, S. and Yoneyama, M., "CEH Product Review : Magnesium Oxide and Other Magnesium Chemicals," In: Chemical Economics Handbook. Menlo Park, CA, SRI International, 93-101(2000).
  25. Hwang, D. J., Yu, Y. H. and Baek, C. S., "Preparation of High Purity PCC from Medium- and Low-grade Limestones Using the Strongly Acidic Cation Exchange Resin," J. Ind. Eng. Chem, 30, 309-321(2015). https://doi.org/10.1016/j.jiec.2015.05.038
  26. Hwang, D. J. and Yu, Y. H., "A Study on Synthesis of CaCO3 & MgO/Mg(OH)2 from Dolomite Using the Strong Acidic Cation Exchange Resin," Korea Chem. Eng. Res., 57(6), 812-825(2019). https://doi.org/10.9713/kcer.2019.57.6.812
  27. Lee, G. J., Kim, W. B. and Kin, J. Y., "The Reaction of Dolomite with NH4Cl," Korea Chem. Eng. Res., 31(3), 263-271(1993).
  28. Jeong, K. S. and Park, I. S., KR patent 10-2015-0060672(2015).
  29. Mun, J. K., Yun, Y. K. and Kwak, M. H., KR patent 10-2011-0141377(2011).
  30. McIntosh, R. M., Sharp, J. H. and Wilburn, F. W., "The Thermal Decomposition of Dolomite," Thermochimica Acta, 165(2), 281-296(1990). https://doi.org/10.1016/0040-6031(90)80228-Q
  31. Rat'ko, A. I., Ivanets, A. I. and Kulak, A. I., "Thermal Decomposition of Natural Dolomite," Inorganic Materials, 47(12), 1372-1377 (2011). https://doi.org/10.1134/S0020168511120156
  32. Wiedemann, H. G. and Bayer, G., "Note on the Thermal Decomposition of Dolomite," Thermochimica Acta, 121, 479-485(1987). https://doi.org/10.1016/0040-6031(87)80195-8