• 제목/요약/키워드: carbon nanoparticle

검색결과 149건 처리시간 0.026초

전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구 (Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method)

  • 권동준;최진영;신평수;이형익;이민경;박종규;박종만
    • Composites Research
    • /
    • 제28권4호
    • /
    • pp.232-238
    • /
    • 2015
  • 본 연구에서는 탄소 나노복합재료 수지의 분산도를 평가하기 위해 전기저항 측정방법을 활용한 평가 예측 연구를 시도하였다. 탄소 나노복합재료 수지을 탄소섬유 토우에 떨어뜨려 탄소섬유의 배열 변화에 따른 전기저항 변화도를 이용하여 분산도를 평가하였다. 분산도가 균일한 탄소 나노복합재료 수지의 상태는 섬유 토우의 배열을 변화시키더라도, 섬유들 사이에 CNT의 영향으로 전기적 접촉면을 생성시켜 비교적 낮은 전기저항 변화도를 나타낸다. 그러나 불균일한 나노입자 분산상태의 수지는 탄소섬유 토우의 필터링 현상에 나노입자와 에폭시가 분리되었다. 탄소섬유의 전기저항 변화도는 크게 변화되며, 이러한 전기저항 변화도의 크기차이를 이용하여 분산도를 분석할 수 있었다. 나노복합재료 수지 적용 섬유강화 복합재료의 ILSS 측정 결과와 전기저항 측정법을 이용한 분산도 평가 결과간의 상관관계를 비교하였다. 균일한 분산도 상태의 나노복합수지를 이용한 경우가 섬유강화 복합재료화 하였을 경우 우수한 계면 특성을 확인하였다.

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성 (Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles)

  • 김형균;이임렬
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선 (Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites)

  • 박미선;배태성;이영석
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.145-152
    • /
    • 2016
  • 본 연구에서는 전기화학적 바이오센서의 포도당 감지능을 높이고자 금 나노 입자가 분산된 다중벽탄소나노튜브(multi-walled carbon nanotube, MWCNTs)에 CuO를 도입하였다. 금 나노 입자로 인하여 나노 클러스터(cluster) 형상을 갖는 CuO가 합성되었으며, 이는 포도당 감지능력에 매우 큰 영향을 나타내었다. 0.1 mole의 CuO가 합성되었을 때 CuO/Au@MWCNTs 나노복합재를 전극재료로서 바이오센서는 $504.1{\mu}A\;mM^{-1}cm^{-2}$으로 가장 높은 민감도를 보여주었으며, 이 값은 MWCNTs만을 전극으로 이용할 때보다 약 4배 정도 컸다. 또한, 0-10 mM의 긴 선형 구간(linear range)과 0.008 mM의 낮은 LoD (limit of detection) 값을 보여주었다. 이러한 실험 결과들은 CuO/Au@MWCNTs 나노복합재가 CuO를 이용한 다른 전기화학적 바이오센서보다 우수하다는 것을 입증하였으며, 이는 나노 클러스터 형상의 CuO가 포도당 감지에서 전기화학적 반응에 유리하기 때문으로 사료된다.

$TiO_2$-MMT를 이용한 디젤오염 철도토양의 개선방안에 관한 연구 (A Study on Remediation Method of Diesel-Contaminated Railroad Soil using $TiO_2$-MMT)

  • 양영민;허현수;이재영;이철규;전유미
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2870-2874
    • /
    • 2011
  • Soil pollution around railroad has been occurred mainly by diesel and lubricant oil, which is difficult to treat due to high carbon number. In this study, we investigated the feasibility of inorganic-inorganic nanohybrid photo-catalyst for the remediation of diesel-contaminated railroad soil. Generally, the $TiO_2$ nanoparticle easily removes organic pollutants due to photo and natural clay of layer structure. Also, montmorillonite (MMT) have an excellent absorption property with organic component. So, we prepared $TiO_2$ pillared MMT nanohybrid photo-catalyst as a chemical oxidant through the integration of theses advantage. As a result, the removal efficiency of diesel was more than 45% at a laboratory-scale test with diesel concentration and the amount of $TiO_2$-MMT. In future, we will improve the removal efficiency of diesel to optimize experimental parameters and apply the field soil The remediation method using photo-catalyst can be used to clean up the railroad soil polluted with high concentration instead of common methods such as soil washing, bioremediation, etc..

  • PDF

Fabrication of Pt-MWNT/Nafion Electrodes by Low-Temperature Decal Transfer Technique for Amperometric Hydrogen Detection

  • Rashid, Muhammad;Jun, Tae-Sun;Kim, Yong Shin
    • 전기화학회지
    • /
    • 제17권1호
    • /
    • pp.18-25
    • /
    • 2014
  • A Pt nanoparticle-decorated multiwall carbon nanotube (Pt-MWNT) electrode was prepared on Nafion by a hot-pressing at relatively low temperature. This electrode exhibited an intricate entangled, nanoporous structure as a result of gathering highly anisotropic Pt-MWNTs. Individual Pt nanoparticles were confirmed to have a polycrystalline face-centered cubic structure with an average crystal size of around 3.5 nm. From the cyclic voltammograms for hydrogen redox reactions, the Pt-MWNT electrode was found to have a similar electrochemical behavior to polycrystalline Pt, and a specific electrochemical surface area of $2170cm^2mg^{-1}$. Upon exposure to hydrogen analyte, the Pt-MWNT/Nafion electrode demon-strated a very high sensitivity of $3.60{\mu}A\;ppm^{-1}$ and an excellent linear response over the concentration range of 100-1000 ppm. Moreover, this electrode was also evaluated in terms of response and recovery times, reproducibility, and long-term stability. Obtained results revealed good sensing performance in hydrogen detection.

그래핀이 포함된 나노유체의 열전도도 특성에 대한 연구 (A Study on the Characteristics of the Thermal conductivity of Nanofluids Containing Graphene)

  • 박성식;전용한;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.93-99
    • /
    • 2012
  • A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Especially graphene nanoparticle that has the high thermal conductivity properties among the various nanoparticles added to the nanofluid is receiving attention. Graphene is a flat monolayer of $sp^2$-bonded carbon atoms tightly packed into a honeycomb lattice. And are known to have very high thermal conductivity. Therefore, we compared thermal conductivity with viscosity of graphene M-5 nanofluids and graphene M-15 nanofluids. Graphene M-5 and graphene M-15 have different average particle diameters and the other properties are the same. Two kinds of graphene nanofluids was examined by measuring thermal conductivity via transient hot-wire method. And the viscosity was measured by using a rotational digital viscometer. As a result, graphene M-5 nanofluids exhibited better thermal conductivity and viscosity than graphene M-15 nanofluids.

Preparation and Electrochemical Performance of CNT Electrode with Deposited Titanium Dioxide for Electrochemical Capacitor

  • Kim, Hong-Il;Kim, Han-Joo;Morita, Masayuki;Park, Soo-Gil
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.423-428
    • /
    • 2010
  • To reduce polarization of electrochemical capacitor based on carbon nanotube, titanium oxide nanoparticles were deposited by ultrasound. The pore distribution of $TiO_2$/CNT nanoparticle exhibited surface area of $341\;m^2g^{-1}$ when $TiO_2$ content was 4 wt %, which was better than that of pristine CNT with surface area of $188\;m^2g^{-1}$. The analyses indicated that titanium oxide (particle diameter < 20 nm) was deposited on the CNT surface. The electrochemical performance was evaluated by using cyclic voltammetry (CV), impedance measurement, and constant-current charge/discharge cycling techniques. The $TiO_2$/CNT composite electrode showed relatively better electrochemical behaviors than CNT electrode by increasing the specific capacitance from $22\;Fg^{-1}$ to $37\;Fg^{-1}$ in 1 M $H_2SO_4$ solution. A symmetric cell assembled with the composite electrodes showed the specific capacitance value of $11\;Fg^{-1}$ at a current loading of $0.5\;mAcm^{-2}$ during initial cycling.

$TiO_2$ 촉매를 첨가한 자가 가습 연료전지용 MEA의 제조 (Preparation of MEA with $TiO_2$ catalysts for Self-humidifying PEMFC)

  • 변정연;이용진;주민철;김화용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.568-571
    • /
    • 2008
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The Pt/$TiO_2$ catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$. The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. Pt/$TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then Pt/$TiO_2$/Nafion composite membrane was prepared using solution-cast method. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Pt/$TiO_2$ particles. To optimize the performance of MEA, amount of ionomer loading was controlled. And mixed catalysts were used. The cell performance of MEA was obviously improved under dry conditions at $65^{\circ}C$.

  • PDF

용액 내 스파크 방전을 이용한 나노입자 제조 및 특성 평가 (Formation of Nanoparticles by Spark Discharge in Liquid)

  • 최후미;김장아;정승교;윤주호;김태성
    • 한국입자에어로졸학회지
    • /
    • 제8권1호
    • /
    • pp.37-43
    • /
    • 2012
  • In this study, we designed a 'spark in liquid' system. The spark discharge between two electrodes were used to generate particles by using sufficient temperature to evaporate a part of electrodes. The power supply system provides a continuous spark discharge by discharging of the capacitor to ionize the electrodes in liquid. The DC spark discharge system operates with 1-10 kV voltage. Processed copper and graphite rods were used to both electrodes with 1-3 mm diameter. There are several variables which can control the particle size and concentration such as gap distance between electrodes, applied voltage, operating liquid temperature, electrode type and liquid type. So we controlled these variables to confirm the change of particle size distribution and concentration of particles contained in liquid as wt%. 'spark in liquid' system is expected to apply nanoink by control of concentration with analysis of characteristics.