DOI QR코드

DOI QR Code

Fabrication of Pt-MWNT/Nafion Electrodes by Low-Temperature Decal Transfer Technique for Amperometric Hydrogen Detection

  • Received : 2013.12.04
  • Accepted : 2013.12.16
  • Published : 2014.02.28

Abstract

A Pt nanoparticle-decorated multiwall carbon nanotube (Pt-MWNT) electrode was prepared on Nafion by a hot-pressing at relatively low temperature. This electrode exhibited an intricate entangled, nanoporous structure as a result of gathering highly anisotropic Pt-MWNTs. Individual Pt nanoparticles were confirmed to have a polycrystalline face-centered cubic structure with an average crystal size of around 3.5 nm. From the cyclic voltammograms for hydrogen redox reactions, the Pt-MWNT electrode was found to have a similar electrochemical behavior to polycrystalline Pt, and a specific electrochemical surface area of $2170cm^2mg^{-1}$. Upon exposure to hydrogen analyte, the Pt-MWNT/Nafion electrode demon-strated a very high sensitivity of $3.60{\mu}A\;ppm^{-1}$ and an excellent linear response over the concentration range of 100-1000 ppm. Moreover, this electrode was also evaluated in terms of response and recovery times, reproducibility, and long-term stability. Obtained results revealed good sensing performance in hydrogen detection.

Keywords

References

  1. G. Korotcenkov, S. D. Han, and J. R. Stetter, 'Review of electrochemical hydrogen sensors' Chem. Rev. 109, 1402 (2009). https://doi.org/10.1021/cr800339k
  2. J. R. Stetter, and J. Li, 'Amperometric gas sensors-a review' Chem. Rev. 108, 352 (2008). https://doi.org/10.1021/cr0681039
  3. F. Opekar, and K. Stulik, 'Electrochemical sensors with solid polymer electrolytes' Anal. Chim. Acta, 385, 151 (1999). https://doi.org/10.1016/S0003-2670(98)00583-2
  4. H.-L. Lin, T. L. Yu, and F.-H. Han, 'A method for improving ionic conductivity of Nafion membranes and its application to PEMFC' J. Polym. Res. 13, 379 (2006).
  5. V. A. Sethuraman, J. W. Weidner, A. T. Haug, L. V. Protsailo, 'Durability of perfluorosulfonic acid and hydrocarbon membranes: effect of humidity and temperature' J. Electrochem. Soc. 155, B119 (2008). https://doi.org/10.1149/1.2806798
  6. Y. Iwai, and T. Yamanishi, 'Thermal stability of ionexchange Nafion N117CS membranes' Polym. Degrad. Stabil. 94, 679 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.12.020
  7. Y. Wang, H. Yan, and E. Wang, 'Solid polymer electrolyte-based hydrogen sulfide sensor' Sens. Actuators B-Chem. 87, 115 (2002). https://doi.org/10.1016/S0925-4005(02)00227-7
  8. Z. Q. Ma, P. Cheng, and T. S. Zhao, 'A palladium-alloy deposited Nafion membrane for direct methanol fuel cells' J. Membrane Science, 215, 327 (2003). https://doi.org/10.1016/S0376-7388(03)00026-7
  9. M. Shen, S. Roy, and K. Scott, 'Preparation and characterisation of Pt deposition on ion conducting membrane for direct methanol fuel cell electrodes' J. App. Electrochemistry, 35, 1103 (2005). https://doi.org/10.1007/s10800-005-9018-6
  10. B.-J. Hwang, Y.-C. Liu, and Y. L. Chen, 'Characteristics of Pt/Nafion electrodes prepared by a Takenata-Torikai method in sensing hydrogen' Mater. Chem. Phys. 69, 267 (2001). https://doi.org/10.1016/S0254-0584(00)00460-0
  11. Y.-C. Weng, and K.-C. Hung, 'Amperometric hydrogen sensor based on $Pt_xPd_y$/Nafion electrode prepared by Takenata-Torikai method' Sens. Actuators B-Chem. 141, 161 (2009). https://doi.org/10.1016/j.snb.2009.06.035
  12. M. Sakthivel, and W. Weppner, 'Development of a hydrogen sensor based on solid polymer electrolyte membranes' Sens. Actuators B-Chem. 113, 998 (2006). https://doi.org/10.1016/j.snb.2005.04.036
  13. B.-J. Hwang, Y.-C. Liu, and W. C. Hsu, 'Nafion-based solid-state gas sensors: Pt/Nafion electrodes prepared by an impregnation-reduction method in sensing oxygen' J. Solid State Electrochem. 2, 378 (1998). https://doi.org/10.1007/s100080050114
  14. P. Millet, R. Durand, E, Dartyge, G. Tourillon, and A. Fontaine, 'Precipitation of metallic platinum into Nation ionomer membranes' J. Electrochem. Soc. 140, 1373 (1993). https://doi.org/10.1149/1.2221563
  15. M. Rashid, T.-S. Jun, Y. S. Kim, 'Material properties of the Pt electrode deposited on Nafion membrane by the impregnation-reduction method' J. Nanosci. Nanotechnol. 12, 5967 (2012). https://doi.org/10.1166/jnn.2012.6292
  16. G. Gao, G. Yang, M. Xu, C. Wang, C. Xu, and H. Li, 'Simple synthesis of Pt nanoparticles on noncovalent functional MWNT surfaces: application in ethanol electrocatalysis' J. Power Sources 173, 178 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.160
  17. Y. Zhao, X. Yang, J. Tian, F. Wang, and L. Zhan, 'A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electrooxidation' J. Power Sources, 195, 4634 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.023
  18. D. Rathod, C. Dickinson, D. Egan, and E. Dempsey, 'Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing' Sens. Actuators B-Chem. 143, 547 (2010). https://doi.org/10.1016/j.snb.2009.09.064
  19. D. Wen, X. Zou, Y. Liu, L. Shang, and S. J. Dong, 'Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing' Talanta 79, 1233 (2009). https://doi.org/10.1016/j.talanta.2009.05.025
  20. J. C. Claussen, S. S. Kim, A. Haque, M. S. Artiles, D. M. Porterfield, and T. S. Fisher, 'Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes' J. Diabetes Sci. Technol. 4, 312 (2010). https://doi.org/10.1177/193229681000400211
  21. D.-D. La, C. K. Kim, T. S. Jun, Y. Jung, G. H. Seong, J. Choo, and Y. S. Kim, 'Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection' Sens. Actuators B-Chem. 155, 191 (2011). https://doi.org/10.1016/j.snb.2010.11.045
  22. J. H. Cho, J. M. Kim, J. Prabhuram, S. Y. Hwang, D. J. Ahn, H. Y. Ha, and S.-K. Kim, 'Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells' J. Power Sources 187, 378 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.111
  23. D. Zhan, J. Velmurugan, M. V. Mirkin, 'Adsorption/desorption of hydrogen on Pt nanoelectrodes: evidence of surface diffusion and spillover' J. Am. Chem. Soc. 131, 14756 (2009). https://doi.org/10.1021/ja902876v
  24. Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, 'Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution' Chem. Eur. J. 12, 2542 (2006). https://doi.org/10.1002/chem.200501010
  25. B. E. Conway, and H. Angerstein-Kozlowska, 'Electrochemical study of multiple-state adsorption in monolayers' Acc. Chem. Res. 14, 49 (1981). https://doi.org/10.1021/ar00062a004
  26. D. Chen, Q. Tao, L. W. Liao, S. X. Liu, Y. X. Chen, and S. Ye, 'Determining the active surface area for various platinum electrodes' Electrocatal, 2, 207 (2011). https://doi.org/10.1007/s12678-011-0054-1
  27. T. Frelink, W. Visscher, and J. A. R. van Veen, 'The third anodic hydrogen peak on platinum: subsurface $H_2$ adsorption' Electrochim. Acta, 40, 545 (1995). https://doi.org/10.1016/0013-4686(95)00005-Y
  28. R. Liu, W.-H. Her, and P. S. Fedkiw, 'In situ electrode formation on a Nation membrane by chemical platinization' J. Electrochem. Soc. 139, 15 (1992). https://doi.org/10.1149/1.2069162
  29. Y.-C. Liu, B.-J. Hwang, and I.-J. Tzeng, 'Solid-state amperometric hydrogen sensor using Pt/C/Nafion composite electrodes prepared by a hot-pressed method' J. Electrochem. Soc. 149, H173 (2002). https://doi.org/10.1149/1.1509462

Cited by

  1. Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles vol.7, pp.1, 2016, https://doi.org/10.5229/JECST.2016.7.1.1
  2. Sensing Behavior of Room Temperature Amperometric H 2 Sensor with Pd Electrodeposited from Ionic Liquid Electrolyte as Sensing Electrode vol.164, pp.8, 2017, https://doi.org/10.1149/2.0331708jes
  3. A New Accurate Equation for Estimating the Baseline for the Reversal Peak of a Cyclic Voltammogram vol.7, pp.4, 2016, https://doi.org/10.5229/JECST.2016.7.4.293