• Title/Summary/Keyword: carbon materials

Search Result 6,127, Processing Time 0.033 seconds

Carbon-based Materials for Atomic Energy Reactor

  • Sathiyamoorthy, D.;Sur, A.K.
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.36-39
    • /
    • 2003
  • Carbon and carbon-based materials are used in nuclear reactors and there has recently been growing interest to develop graphite and carbon based materials for high temperature nuclear and fusion reactors. Efforts are underway to develop high density carbon materials as well as amorphous isotropic carbon for the application in thermal reactors. There has been research on coated nuclear fuel for high temperature reactor and research and development on coated fuels are now focused on fuel particles with high endurance during normal lifetime of the reactor. Since graphite as a moderator as well as structural material in high temperature reactors is one of the most favored choices, it is now felt to develop high density isotropic graphite with suitable coating for safe application of carbon based materials even in oxidizing or water vapor environment. Carboncarbon composite materials compared to conventional graphite materials are now being looked into as the promising materials for the fusion reactor due their ability to have high thermal conductivity and high thermal shock resistance. This paper deals with the application of carbon materials on various nuclear reactors related issues and addresses the current need for focused research on novel carbon materials for future new generation nuclear reactors.

  • PDF

Interface and Microstructure Development in Carbon/Carbon Composites

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.;Dhakate, S.R.;Rand, B.
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.62-67
    • /
    • 2004
  • Performance of carbon-carbon composites is known to be influenced by the fibre matrix interactions. The present investigation was undertaken to ascertain the development of microstructure in such composites when carbon fibres possessing different surface energies (T-300, HM-35, P120 and Dialed 1370) and pitch matrices with different characteristics (Coal tar pitch $SP110^{\circ}C$ and mesophase pitch $SP285^{\circ}C$) are used as precursor materials. These composites were subjected to two different heat treatment temperatures of $1000^{\circ}C$ and $2600^{\circ}C$. Quite interesting changes in the crystalline parameters as well as the matrix microstructure are observed and attempt has been made to correlate these observations with the fibre matrix interactions.

  • PDF

Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications

  • Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.89-104
    • /
    • 2014
  • Materials with appropriate surface roughness and low surface energy can form superhydrophobic surfaces, displaying water contact angles greater than $150^{\circ}$. Superhydrophobic carbon-based materials are particularly interesting due to their exceptional physicochemical properties. This review discusses the various techniques used to produce superhydrophobic carbon-based materials such as carbon fibers, carbon nanotubes, graphene, amorphous carbons, etc. Recent advances in emerging fields such as energy, environmental remediation, and thermal management in relation to these materials are also discussed.

Advances in liquid crystalline nano-carbon materials: preparation of nano-carbon based lyotropic liquid crystal and their fabrication of nano-carbon fibers with liquid crystalline spinning

  • Choi, Yong-Mun;Jung, Jin;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Hyeonsu;Ku, Bon-Cheol;Goh, Munju
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.223-232
    • /
    • 2015
  • This review presents current progress in the preparation methods of liquid crystalline nano-carbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.

Purification of Multi Walled Carbon Nanotubes (Mwcnts) Synthesized by Arc Discharge Set Up

  • Malathi, Y.;Padya, Balaji;Prabhakar, K.V.P.;Jain, P.K.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • Carbon nanotubes are unique tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one up to tens and hundreds of concentric shells of carbons with adjacent shells separation of ~0.34 nm. Multiwalled carbon nanotubes were synthesized by arc-discharge technique. MWCNTs were formed at the cathode deposit along with other carbonaceous materials like amorphous carbon, graphite etc. However, to get the best advantage of carbon nanotubes in various advanced applications, these undesired carbonaceous materials to be removed which is a challenging task. In the present study, various techniques were tried out for purifying MWCNTs such as physical filtration, chemical treatment and thermal annealing. SEM, FTIR, TGA and BET techniques were used to characterize the CNTs at various stages. Results shows that suitable chemical treatment followed by thermal annealing under controlled flow of oxygen gives the better route for purification of carbon nanotubes.

Synthesis of Silicon Carbide Nanowhiskers from Coconut Fibres and Sol-Gel Derived Silica

  • Raman, V.;Bhatia, G.;Mishra, A.;Saha, M.;Sengupta, P.R.;Srivastava, A.K.
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.166-170
    • /
    • 2006
  • Silicon carbide whiskers ($SiC_w$) having the diameter in the range of 20-80 nm were synthesised from coconut fibres through sol-gel process. The coconut fibres were impregnated with tetraethoxysilane and methyltriethoxysilane derived sol and pyrolyzed at $1400^{\circ}C$ in argon. X-ray of the pyrolyzed samples showed the formation of ${\beta}$-SiC.

  • PDF

Microwave heating of carbon-based solid materials

  • Kim, Teawon;Lee, Jaegeun;Lee, Kun-Hong
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • As a part of the electromagnetic spectrum, microwaves heat materials fast and efficiently via direct energy transfer, while conventional heating methods rely on conduction and convection. To date, the use of microwave heating in the research of carbon-based materials has been mainly limited to liquid solutions. However, more rapid and efficient heating is possible in electron-rich solid materials, because the target materials absorb the energy of microwaves effectively and exclusively. Carbon-based solid materials are suitable for microwave-heating due to the delocalized pi electrons from sp2-hybridized carbon networks. In this perspective review, research on the microwave heating of carbon-based solid materials is extensively investigated. This review includes basic theories of microwave heating, and applications in carbon nanotubes, graphite and other carbon-based materials. Finally, priority issues are discussed for the advanced use of microwave heating, which have been poorly understood so far: heating mechanism, temperature control, and penetration depth.

Carbon nanomaterials in organic photovoltaic cells

  • Kim, Tae-Hoon;Yang, Seung-Jae;Park, Chong-Rae
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.194-206
    • /
    • 2011
  • Carbon nanomaterials in organic photovoltaic (OPV) cells have attracted a great deal of interest for the development of high-efficiency, flexible, and low-cost solar cells. Due to the complicated structure of OPV devices, the electrical properties and dispersion behavior of the carbon nanomaterials should be controlled carefully in order for them to be used as materials in OPV devices. In this paper, a fundamental theory of the electrical properties and dispersion behavior of carbon nanomaterials is reviewed. Based on this review, a state-of-the-art OPV device composed of carbon nanomaterials, along with issues related to such devices, are discussed.