DOI QR코드

DOI QR Code

Microwave heating of carbon-based solid materials

  • Kim, Teawon (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Jaegeun (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science and Technology)
  • Received : 2013.12.03
  • Accepted : 2013.12.19
  • Published : 2014.01.31

Abstract

As a part of the electromagnetic spectrum, microwaves heat materials fast and efficiently via direct energy transfer, while conventional heating methods rely on conduction and convection. To date, the use of microwave heating in the research of carbon-based materials has been mainly limited to liquid solutions. However, more rapid and efficient heating is possible in electron-rich solid materials, because the target materials absorb the energy of microwaves effectively and exclusively. Carbon-based solid materials are suitable for microwave-heating due to the delocalized pi electrons from sp2-hybridized carbon networks. In this perspective review, research on the microwave heating of carbon-based solid materials is extensively investigated. This review includes basic theories of microwave heating, and applications in carbon nanotubes, graphite and other carbon-based materials. Finally, priority issues are discussed for the advanced use of microwave heating, which have been poorly understood so far: heating mechanism, temperature control, and penetration depth.

Keywords

References

  1. Kappe CO, Dallinger D, Murphree SS. Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols, Wiley-VCH, Weinheim (2009).
  2. Gupta M, Wong WL. Microwaves and Metals, John Wiley & Sons, Hoboken, NJ (2007).
  3. Wallace PR. The band theory of graphite. Phys Rev, 71, 622 (1947). http://dx.doi.org/10.1103/PhysRev.71.622.
  4. Ganguli N, Krishnan KS. The magnetic and other properties of the free electrons in graphite. Proc Royal Soc London Series A Math Phys Sci, 177, 168 (1941). http://dx.doi.org/10.1098/rspa.1941.0002.
  5. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett, 319, 460 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00196-2.
  6. Imholt TJ, Dyke CA, Hasslacher B, Perez JM, Price DW, Roberts JA, Scott JB, Wadhawan A, Ye Z, Tour JM. Nanotubes in microwave fields: light emission, intense heat, outgassing, and reconstruction. Chem Mater, 15, 3969 (2003). http://dx.doi.org/10.1021/cm034530g.
  7. Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 309, 1215 (2005). http://dx.doi.org/10.1126/science.1115311.
  8. Wang CY, Chen TH, Chang SC, Cheng SY, Chin TS. Strong carbon-nanotube-polymer bonding by microwave irradiation. Adv Funct Mater, 17, 1979 (2007). http://dx.doi.org/10.1002/adfm.200601011.
  9. Wang CY, Chen TH, Chang SC, Chin TS, Cheng SY. Flexible field emitter made of carbon nanotubes microwave welded onto polymer substrates. Appl Phys Lett, 90, 103111 (2007). http://dx.doi.org/10.1063/1.2711771.
  10. Shim HC, Kwak YK, Han CS, Kim S. Enhancement of adhesion between carbon nanotubes and polymer substrates using microwave irradiation. Scripta Mater, 61, 32 (2009). http://dx.doi.org/10.1016/j.scriptamat.2009.02.060.
  11. Wang H, Feng J, Hu X, Ming Ng K. The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation. Nanotechnology, 20, 095601 (2009). http://dx.doi.org/10.1088/0957-4484/20/9/095601.
  12. Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater, 18, 1505 (2006). http://dx.doi.org/10.1002/adma.200502528.
  13. Xie R, Wang J, Yang Y, Jiang K, Li Q, Fan S. Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Composites Sci Technol, 72, 85 (2011). http://dx.doi.org/10.1016/j.compscitech.2011.10.003.
  14. Wu T, Pan Y, Liu E, Li L. Carbon nanotube/polypropylene composite particles for microwave welding. J Appl Polym Sci, 126, E283 (2012). http://dx.doi.org/10.1002/app.36832.
  15. Han JT, Kim D, Kim JS, Seol SK, Jeong SY, Jeong HJ, Chang WS, Lee GW, Jung S. Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding. Appl Phys Lett, 100, 163120 (2012). http://dx.doi.org/10.1063/1.4704666.
  16. Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002.
  17. Lin W, Moon KS, Zhang S, Ding Y, Shang J, Chen M, Wong CP. Microwave makes carbon nanotubes less defective. ACS Nano, 4, 1716 (2010). http://dx.doi.org/10.1021/nn901621c.
  18. Wang J, Peng X, Luan Z, Zhao C. Regeneration of carbon nanotubes exhausted with dye reactive red 3BS using microwave irradiation. J Hazard Mater, 178, 1125 (2010). http://dx.doi.org/10.1016/j.jhazmat.2010.01.112.
  19. Irin F, Shrestha B, Canas JE, Saed MA, Green MJ. Detection of carbon nanotubes in biological samples through microwave-induced heating. Carbon, 50, 4441 (2012). http://dx.doi.org/10.1016/j.carbon.2012.05.022.
  20. Sridhar V, Jeon JH, Oh IK. Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon, 48, 2953 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.034.
  21. Kwon OY, Choi SW, Park KW, Kwon YB. The preparation of exfoliated graphite by using microwave. J Ind Eng Chem, 9, 743 (2003).
  22. Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB. Intercalation and exfoliation routes to graphite nanoplatelets. J Mater Chem, 15, 974 (2005). http://dx.doi.org/10.1039/B413029D.
  23. Tryba B, Morawski AW, Inagaki M. Preparation of exfoliated graphite by microwave irradiation. Carbon, 43, 2417 (2005). http://dx.doi.org/10.1016/j.carbon.2005.04.017.
  24. Falcao EHL, Blair RG, Mack JJ, Viculis LM, Kwon CW, Bendikov M, Kaner RB, Dunn BS, Wudl F. Microwave exfoliation of a graphite intercalation compound. Carbon, 45, 1367 (2007). http://dx.doi.org/10.1016/j.carbon.2007.01.018.
  25. Wei T, Fan Z, Luo G, Zheng C, Xie D. A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon, 47, 337 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.013.
  26. Yu XJ, Wu J, Zhao Q, Cheng XW. Study on the sorption of exfoliated graphite prepared by microwave irradiation. International Conference on Energy and Environment Technology, Guilin, China, 590 (2009). http://dx.doi.org/10.1109/ICEET.2009.610.
  27. Xin G, Hwang W, Kim N, Cho SM, Chae H. A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes. Nanotechnology, 21, 405201 (2010). http://dx.doi.org/10.1088/0957-4484/21/40/405201.
  28. Geng Y, Zheng Q, Kim JK. Effects of stage, intercalant species and expansion technique on exfoliation of graphite intercalation compound into graphene sheets. J Nanosci Nanotechnol, 11, 1084 (2011). http://dx.doi.org/10.1166/jnn.2011.3063.
  29. Chuan XY. Graphene-like nanosheets synthesized by natural flaky graphite in Shandong, China. Int Nano Lett, 3, 1 (2013). http://dx.doi.org/10.1186/2228-5326-3-6.
  30. Li Z, Yao Y, Lin Z, Moon K-S, Lin W, Wong C. Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem, 20, 4781 (2010). http://dx.doi.org/10.1039/C0JM00168F.
  31. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 48, 2118 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001.
  32. Hu H, Zhao Z, Zhou Q, Gogotsi Y, Qiu J. The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 50, 3267 (2012). http://dx.doi.org/10.1016/j.carbon.2011.12.005.
  33. Marsh H. Activated Carbon, Elsevier, Boston, MA (2006).
  34. Donnet JB. Carbon Fibers. 3rd ed., Marcel Dekker, New York, NY (1998).
  35. Cha CY, Kong Y. Enhancement of $NO_x$ adsorption capacity and rate of char by microwaves. Carbon, 33, 1141 (1995). http://dx.doi.org/10.1016/0008-6223(95)00066-M.
  36. Kong Y, Cha CY. Reduction of $No_x$ adsorbed on char with micro-wave energy. Carbon, 34, 1035 (1996). http://dx.doi.org/10.1016/0008-6223(96)00051-6.
  37. Kong Y, Cha CY. $No_x$ abatement with carbon adsorbents and microwave energy. Energy Fuels, 9, 971 (1995). http://dx.doi.org/10.1021/ef00054a006.
  38. Kong Y, Cha CY. Microwave-induced regeneration of $No_x$-saturated char. Energy Fuels, 10, 1245 (1996). http://dx.doi.org/10.1021/ef960060j.
  39. Menendez JA, Menendez EM, Iglesias MJ, Garcia A, Pis JJ. Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon, 37, 1115 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00302-9.
  40. Menendez JA, Menendez EM, Garcia A, Parra JB, Pis JJ. Thermal treatment of active carbons: a comparison between microwave and electrical heating. J Microw Power Electromagn Energy, 34, 137 (1999). https://doi.org/10.1080/08327823.1999.11688398
  41. Tai HS, Jou CJG. Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere, 38, 2667 (1999). http://dx.doi.org/10.1016/S0045-6535(98)00432-9.
  42. Cha CY, Kim DS. Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed. Carbon, 39, 1159 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00240-2.
  43. Liu X, Quan X, Bo L, Chen S, Zhao Y. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon, 42, 415 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.032.
  44. Ania CO, Menendez JA, Parra JB, Pis JJ. Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon, 42, 1383 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.010.
  45. Ania CO, Parra JB, Menendez JA, Pis JJ. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Res, 41, 3299 (2007). http://dx.doi.org/10.1016/j.watres.2007.05.006.
  46. Zhang Z, Shan Y, Wang J, Ling H, Zang S, Gao W, Zhao Z, Zhang H. Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. J Hazard Mater, 147, 325 (2007). http://dx.doi.org/10.1016/j.jhazmat.2006.12.083.
  47. Yagmur E, Ozmak M, Aktas Z. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel, 87, 3278 (2008). http://dx.doi.org/10.1016/j.fuel.2008.05.005.
  48. Li W, Zhang LB, Peng JH, Li N, Zhu XY. Preparation of high surface area activated carbons from tobacco stems with $K_2CO_3$ activation using microwave radiation. Ind Crops Prod, 27, 341 (2008). http://dx.doi.org/10.1016/j.indcrop.2007.11.011.
  49. Carrott PJM, Nabais JMV, Ribeiro Carrott MML, Menendez JA. Thermal treatments of activated carbon fibres using a microwave furnace. Microporous Mesoporous Mater, 47, 243 (2001). http://dx.doi.org/10.1016/S1387-1811(01)00384-5.
  50. Li D, Zhang Y, Quan X, Zhao Y. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J Environ Sci (China), 21, 1290 (2009). http://dx.doi.org/10.1016/S1001-0742(08)62417-1.
  51. Lester E, Kingman S. The effect of microwave pre-heating on five different coals. Fuel, 83, 1941 (2004). http://dx.doi.org/10.1016/j.fuel.2004.05.006.
  52. Lester E, Kingman S, Dodds C, Patrick J. The potential for rapid coke making using microwave energy. Fuel, 85, 2057 (2006). http://dx.doi.org/10.1016/j.fuel.2006.04.012.
  53. Silver S. Microwave Antenna Theory and Design, P. Peregrinus on behalf of the Institution of Electrical Engineers, London, UK (1984).
  54. Sillars RW. The properties of a dielectric containing semiconducting particles of various shapes. J Inst Electr Eng, 80, 378 (1937).
  55. Menendez JA, Arenillas A, Fidalgo B, Fernandez Y, Zubizarreta L, Calvo EG, Bermudez JM. Microwave heating processes involving carbon materials. Fuel Process Technol, 91, 1 (2010). http://dx.doi.org/10.1016/j.fuproc.2009.08.021.
  56. Nabais JMV, Carrott PJM, Carrott MMLR, Padre-Eterno AM, Menendez JA, Dominguez A, Ortiz AL. New acrylic monolithic carbon molecular sieves for $O_2/N_2$ and $CO_2/CH_4$ separations. Carbon, 44, 1158 (2006). http://dx.doi.org/10.1016/j.carbon.2005.11.005.
  57. Metaxas AC, Meredith RJ. Industrial Microwave Heating. Reprinted with minor corrections, 1988 ed., P. Peregrinus on behalf of the Institution of Electrical Engineers, London, UK (1988).
  58. Metaxas AC. Foundations of Electroheat: A Unified Approach, John Wiley and Sons, New York, NY (1996).

Cited by

  1. On the view of dielectric properties in microwave-assisted activated carbon preparation vol.10, pp.6, 2015, https://doi.org/10.1002/apj.1927
  2. Dielectric properties of potassium carbonate-impregnated cempedak peel for microwave-assisted activation vol.12, pp.1, 2016, https://doi.org/10.1002/apj.2062
  3. Carbonaceous nano-additives augment microwave-enabled thermal remediation of soils containing petroleum hydrocarbons vol.3, pp.5, 2016, https://doi.org/10.1039/C6EN00261G
  4. Full graphitization of amorphous carbon by microwave heating vol.6, pp.29, 2016, https://doi.org/10.1039/C6RA01989G
  5. Sub-second carbon-nanotube-mediated microwave sintering for high-conductivity silver patterns on plastic substrates vol.8, pp.9, 2016, https://doi.org/10.1039/C5NR08082G
  6. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger vol.10, pp.10, 2017, https://doi.org/10.3390/ma10101160
  7. Effective Synthesis of Silicon Carbide Nanotubes by Microwave Heating of Blended Silicon Dioxide and Multi-Walled Carbon Nanotube vol.20, pp.6, 2017, https://doi.org/10.1590/1980-5373-mr-2017-0277
  8. Nanocomposites and Their Applications in Gas Sensors vol.9, pp.37, 2017, https://doi.org/10.1021/acsami.7b02533
  9. adsorption pp.2048-4038, 2018, https://doi.org/10.1177/0263617417704527
  10. Synthesis of SiC nanowhiskers from graphite and silica by microwave heating vol.34, pp.4, 2016, https://doi.org/10.1515/msp-2016-0101
  11. The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS) vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23465-5
  12. Microwave pre-oxidation for polyacrylonitrile precursor coated with nano-carbon black pp.00323888, 2018, https://doi.org/10.1002/pen.24943
  13. hierarchical assembly of low-dimensional nanomaterials on graphene aerogels: a versatile strategy vol.6, pp.38, 2018, https://doi.org/10.1039/C8TA07338D
  14. Integrating reduced graphene oxide with microwave-subcritical water for cellulose depolymerization pp.2044-4761, 2018, https://doi.org/10.1039/C8CY00953H
  15. Microwave-enhanced advanced oxidation processes for the degradation of dyes in water vol.16, pp.3, 2018, https://doi.org/10.1007/s10311-018-0739-2
  16. Microwave heating behaviors of used mercury-containing catalysts pp.1563-5201, 2018, https://doi.org/10.1080/00986445.2018.1463525