DOI QR코드

DOI QR Code

Purification of Multi Walled Carbon Nanotubes (Mwcnts) Synthesized by Arc Discharge Set Up

  • Malathi, Y. (Center for Carbon Materials, International Advanced research Centre for Powder Metallurgy and New Materials (ARC-I)) ;
  • Padya, Balaji (Center for Carbon Materials, International Advanced research Centre for Powder Metallurgy and New Materials (ARC-I)) ;
  • Prabhakar, K.V.P. (Center for Carbon Materials, International Advanced research Centre for Powder Metallurgy and New Materials (ARC-I)) ;
  • Jain, P.K. (Center for Carbon Materials, International Advanced research Centre for Powder Metallurgy and New Materials (ARC-I))
  • Received : 2010.06.23
  • Accepted : 2010.09.06
  • Published : 2010.09.30

Abstract

Carbon nanotubes are unique tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one up to tens and hundreds of concentric shells of carbons with adjacent shells separation of ~0.34 nm. Multiwalled carbon nanotubes were synthesized by arc-discharge technique. MWCNTs were formed at the cathode deposit along with other carbonaceous materials like amorphous carbon, graphite etc. However, to get the best advantage of carbon nanotubes in various advanced applications, these undesired carbonaceous materials to be removed which is a challenging task. In the present study, various techniques were tried out for purifying MWCNTs such as physical filtration, chemical treatment and thermal annealing. SEM, FTIR, TGA and BET techniques were used to characterize the CNTs at various stages. Results shows that suitable chemical treatment followed by thermal annealing under controlled flow of oxygen gives the better route for purification of carbon nanotubes.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H., Science 1999, 283, 512. https://doi.org/10.1126/science.283.5401.512
  3. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. https://doi.org/10.1126/science.287.5459.1801
  4. Dillon, A. C.; Jones, K. B. ; Bekkedahl, T. A.; Lang, C. H.;. Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377. https://doi.org/10.1038/386377a0
  5. Lee, S. M.; Park, K. S.; Choi, Y. C.; Park, Y. S.; Bok, J. M.; Bae, D. J. Synth metals 2000, 113, 209. https://doi.org/10.1016/S0379-6779(99)00275-1
  6. Nutzenadel, C. Zuttel, A.; Chartauni, D.; Schalpbach, L. Electro Chem. Solid State Lett. 1999, 2, 30. https://doi.org/10.1149/1.1390724
  7. Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Phys Rev Lett. 1996, 76, 2511. https://doi.org/10.1103/PhysRevLett.76.2511
  8. Salvetat, J. P. ;. Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stockli, T. Phys Rev Lett. 1999, 82, 944. https://doi.org/10.1103/PhysRevLett.82.944
  9. Mintmire, J. W.; Dunlap, B. I.;.White C. T. Phys Rev Lett. 1992, 68, 631. https://doi.org/10.1103/PhysRevLett.68.631
  10. Hammada, N.; Sawada, S.; Oshiyama, A. Phys Rev Lett. 1992, 68, 1579. https://doi.org/10.1103/PhysRevLett.68.1579
  11. Lee, S. M.; Lee, Y. H. Appl. Phys. Lett. 2000, 76, 2877. https://doi.org/10.1063/1.126503
  12. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. https://doi.org/10.1126/science.287.5459.1801
  13. Kong, J. ; Franklin, N. R. ;. Zhou, C. W.;. Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H. J. Science 2000, 287, 622. https://doi.org/10.1126/science.287.5453.622
  14. Collins, P. G.; Zettl, A.; Bando, H.; Thess, R. E. Appl. Surf. Sci. 1999, 141, 201. https://doi.org/10.1016/S0169-4332(98)00506-6
  15. Avouris, P. ; Hertel, T.; Martel, R.; Schimidt, T.;. Shea, H. R.; Walkup, R. E.; Appl Surf. Sci. 1999, 141, 201. https://doi.org/10.1016/S0169-4332(98)00506-6
  16. Dheer, W. A.; Chatelian, A.; Ugarate, D.; Science 1995, 270, 1179. https://doi.org/10.1126/science.270.5239.1179
  17. Choi, W. B.; Jin, Y. W.; Kim, H. Y.; Lee, S. J.; Yun, M.J.; Kang, J. H.: Choi, Y.S.; Park, N. S.; Lee, N. S.; Kim, J. M. Appl Phys. Lett. 2001, 78, 1547. https://doi.org/10.1063/1.1349870
  18. Wang, Q.; Setlur, H. A. A.; Lauerhaas, J.M.; Dai, J. Y.; Seelig, E. W.; Chang, R. P. H. Appl. Phys. Lett. 1998, 72, 2912. https://doi.org/10.1063/1.121493
  19. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483. https://doi.org/10.1126/science.273.5274.483
  20. Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; Chapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Nature 1997, 388, 756. https://doi.org/10.1038/41972
  21. Ivanov, V.; Nagy, J. B.; Lambin, P.; Lucas, A.; Zhang, X. B.; Zhang, X. F.; Bernaerts, D.; Vantendeloo, G.;. Amelinckx, S.; Vanlanduyt, J. Chem. Phys. Lett. 1994, 223, 329. https://doi.org/10.1016/0009-2614(94)00467-6
  22. Endo, M.; Dresselhaus, M. S.; Dresselhaus, G.; Ebbesen, T. W.; Boca Raton, F. L. "Carbon Nanotubes: Preparation and Properties", CRC Press, 1997.
  23. Rinzler, A. G. ; Liu, J.; Dia, H.; Nikolaev, P.; Huffman, C. B.; Rodriguez-Macias, F. J.; Boul, P. J.; Lu, A. H.; Heymann, D.; Colbert, D. T.; Lee, R. S.; Fischer, J. E.; Rao, A. M.; Eklund, P. C. ; Smalley, R. E.; Appl. Phys. A 1998, 67, 29. https://doi.org/10.1007/s003390050734
  24. Ebbesen, T. W.; Ajayan, P. M.; Hiura, H.; Tanigaki, K.; Nature 1994, 367, 519. https://doi.org/10.1038/367519a0
  25. Hiura, H.; Ebbesen,T. W.; Tanigaki, K.; Adv. Mater. 1995, 7, 275. https://doi.org/10.1002/adma.19950070304
  26. Dujardin, E.; Ebbesen, T. W.; Krishnan, A.; Treacy, M. M. J.; Adv. Mater. 10, 611.
  27. Bandow, S.; Rao, A. M; Williams, K. A.; Thess, A.; Smalley, R. E. ; Eklund, P. C. J. Phys. Chem. B 1997, 101, 8839. https://doi.org/10.1021/jp972026r
  28. Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Phys. Lett. 1998, 282, 429.
  29. Murphy, R.; Coleman, J. N.; Cadek, M.; McCarthy, B.; Bent, M.; Drury, A.; Barklie, R. C.; Blau, W. J. Phys .Chem. B 2002, 106, 3087. https://doi.org/10.1021/jp0132836
  30. Park, Y. S.; Choi, Y. C.; Kim, K. S.; Chung, D. C. Carbon 2001, 39, 655. https://doi.org/10.1016/S0008-6223(00)00152-4
  31. Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hura, H. Nature 1993, 362, 522. https://doi.org/10.1038/362522a0
  32. Kim, T. J.; Kim, T. H.; Kim, W. Y.; Lee, K.H.; Hahn, Y.-B. Korean Journal of Chem. Eng., 2002, 19, 519. https://doi.org/10.1007/BF02697166
  33. Kim, K. S.; Park, Y. S.; Kay Hyeok An. Carbon Science 2000, 1, 53.
  34. Ohshima, S.; Uchida, K.; Kuriki, Y.; Hayakawa, H.; Yumura, M.; Carbon 1994, 32, 1539. https://doi.org/10.1016/0008-6223(94)90152-X
  35. Ko, F.-H.; Lee, C.-Y.; Ko, C.-J; Chu, T.-C. Carbon 2005, 43, 727. https://doi.org/10.1016/j.carbon.2004.10.042
  36. Ko, C.-J.; Lee, C.-Y.; Ko, F.-H.; Chen, H.-L.; Chu, T.-C. Microelectronic Eng. 2004, 73, 570. https://doi.org/10.1016/S0167-9317(04)00141-8
  37. Kim, K. S.; Park,Y.S.; An, K. H. Carbon Science 2000, 1, 53.
  38. Jain, P. K.; Mahajan, Y. R.; Sundararajan, G.; Okotrub, A. V.; Yudanov, N. F.; Romanenko, A. I. Carbon Science 2002, 3, 142
  39. Prabhakar, K. V. P.; Jain, P. K.; Sundaresan, R. National Conf. on Carbon, Bhopal, India, 2006, 140.