DOI QR코드

DOI QR Code

Carbon nanomaterials in organic photovoltaic cells

  • Kim, Tae-Hoon (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University) ;
  • Yang, Seung-Jae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University) ;
  • Park, Chong-Rae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
  • Received : 2011.08.10
  • Accepted : 2011.11.22
  • Published : 2011.12.30

Abstract

Carbon nanomaterials in organic photovoltaic (OPV) cells have attracted a great deal of interest for the development of high-efficiency, flexible, and low-cost solar cells. Due to the complicated structure of OPV devices, the electrical properties and dispersion behavior of the carbon nanomaterials should be controlled carefully in order for them to be used as materials in OPV devices. In this paper, a fundamental theory of the electrical properties and dispersion behavior of carbon nanomaterials is reviewed. Based on this review, a state-of-the-art OPV device composed of carbon nanomaterials, along with issues related to such devices, are discussed.

Keywords

References

  1. Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnol, 2, 605 (2007). http://dx.doi.org/10.1038/nnano.2007.300.
  2. Durkop T, Getty SA, Cobas E, Fuhrer MS. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett, 4, 35 (2004). http://dx.doi.org/10.1021/nl034841q.
  3. Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev, 107, 1324 (2007). http://dx.doi.org/10.1021/cr050149z.
  4. Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 21, 1323 (2009). http://dx.doi.org/10.1002/adma.200801283.
  5. Chen HY, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon, 3, 649 (2009). http://dx.doi.org/10.1038/nphoton.2009.192.
  6. Gregg BA. Excitonic solar cells. J Phys Chem B, 107, 4688 (2003). http://dx.doi.org/10.1021/jp022507x.
  7. Tang CW. Two-layer organic photovoltaic cell. Appl Phys Lett, 48, 183 (1986). http://dx.doi.org/10.1063/1.96937.
  8. Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD. Polymer-based solar cells. Mater Today, 10, 28 (2007). http://dx.doi.org/10.1016/s1369-7021(07)70276-6.
  9. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions. Science, 270, 1789 (1995). http://dx.doi.org/10.1126/science.270.5243.1789.
  10. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon, 3, 297 (2009). http://dx.doi.org/10.1038/nphoton.2009.69.
  11. Coakley KM, Liu Y, McGehee MD, Frindell KL, Stucky GD. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications. Adv Funct Mater, 13, 301 (2003). http://dx.doi.org/10.1002/adfm.200304361.
  12. Beek WJE, Wienk MM, Janssen RAJ. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater, 16, 1112 (2006). http://dx.doi.org/10.1002/adfm.200500573.
  13. Chang CH, Huang TK, Lin YT, Lin YY, Chen CW, Chu TH, Su WF. Improved charge separation and transport efficiency in poly(3- hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells. J Mater Chem, 18, 2201 (2008). http://dx.doi.org/10.1039/b800071a.
  14. Jeong HK, Jin MH, So KP, Lim SC, Lee YH. Tailoring the characteristics of graphite oxides by different oxidation times. J Phys D: Appl Phys, 42, 065418 (2009). http://dx.doi.org/10.1088/0022-3727/42/6/065418.
  15. He Y, Chen HY, Hou J, Li Y. Indene - C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc, 132, 1377 (2010). http://dx.doi.org/10.1021/ja908602j.
  16. Cravino A. Origin of the open circuit voltage of donor-acceptor solar cells: do polaronic energy levels play a role? Appl Phys Lett, 91, 243502 (2007). http://dx.doi.org/10.1063/1.2817930.
  17. Kymakis E, Servati P, Tzanetakis P, Koudoumas E, Kornilios N, Rompogiannakis I, Franghiadakis Y, Amaratunga GAJ. Effective mobility and photocurrent in carbon nanotube-polymer composite photovoltaic cells. Nanotechnology, 18, 435702 (2007). http://dx.doi.org/10.1088/0957-4484/18/43/435702.
  18. Mihailetchi VD, Wildeman J, Blom PWM. Space-charge limited photocurrent. Phys Rev Lett, 94, 126602 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.126602.
  19. Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS. Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org Electron, 3, 105 (2002). http://dx.doi.org/10.1016/s1566-1199(02)00039-3.
  20. Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett, 69, 4108 (1996). http://dx.doi.org/10.1063/1.117834.
  21. Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. Science, 280, 1741 (1998). http://dx.doi.org/10.1126/science.280.5370.1741.
  22. Yang CM, Liao HH, Horng SF, Meng HF, Tseng SR, Hsu CS. Electron mobility and electroluminescence efficiency of blue conjugated polymers. Synth Met, 158, 25 (2008). http://dx.doi.org/10.1016/j.synthmet.2007.11.006.
  23. Chirvase D, Chiguvare Z, Knipper M, Parisi J, Dyakonov V, Hummelen JC. Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells. J Appl Phys, 93, 3376 (2003). http://dx.doi.org/10.1063/1.1545162.
  24. Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC. Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett, 9, 551 (2007). http://dx.doi.org/10.1021/ol062666p.
  25. Kooistra FB, Mihailetchi VD, Popescu LM, Kronholm D, Blom PWM, Hummelen JC. New C84 derivative and its application in a bulk heterojunction solar cell. Chem Mater, 18, 3068 (2006). http://dx.doi.org/10.1021/cm052783z.
  26. Frankevich E, Maruyama Y, Ogata H. Mobility of charge carriers in vapor-phase grown C60 single crystal. Chem Phys Lett, 214, 39 (1993). http://dx.doi.org/10.1016/0009-2614(93)85452-T.
  27. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM. C60 thin film transistors. Appl Phys Lett, 67, 121 (1995). http://dx.doi.org/10.1063/1.115503.
  28. Wobkenberg PH, Bradley DDC, Kronholm D, Hummelen JC, de Leeuw DM, Colle M, Anthopoulos TD. High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives. Synth Met, 158, 468 (2008). http://dx.doi.org/10.1016/j.synthmet.2008.03.016.
  29. Singh TB, Marjanovic N, Stadler P, Auinger M, Matt GJ, Gunes S, Sariciftci NS, Schwodiauer R, Bauer S. Fabrication and characterization of solution-processed methanofullerene- based organic field-effect transistors. J Appl Phys, 97, 083714 (2005). http://dx.doi.org/10.1063/1.1895466.
  30. Mihailetchi VD, Van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM. Electron transport in a methanofullerene. Adv Funct Mater, 13, 43 (2003). http://dx.doi.org/10.1002/adfm.200390004.
  31. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, Van Hal PA, Janssen RAJ. Efficient methano[70]fullerene/MDMOPPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed, 42, 3371 (2003). http://dx.doi.org/10.1002/anie.200351647.
  32. Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S. A fullerenesingle wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem, 17, 2406 (2007). http://dx.doi.org/10.1039/b618518e.
  33. Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL. UItrasmooth, large-area, highuniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater, 21, 3210 (2009). http://dx.doi.org/10.1002/adma.200803551.
  34. Zou J, Chen H, Chunder A, Yu Y, Huo Q, Zhai L. Preparation of a superhydrophobic and conductive nanocomposite coating from a carbon-nanotube-conjugated block copolymer dispersion. Adv Mater, 20, 3337 (2008). http://dx.doi.org/10.1002/adma.200703094.
  35. Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC. Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells. Chem Commun, 9, 2116 (2003). http://dx.doi.org/10.1039/B305988J.
  36. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC. 2.5% efficient organic plastic solar cells. Appl Phys Lett, 78, 841 (2001). http://dx.doi.org/10.1063/1.1345834.
  37. Brabec CJ, Cravino A, Meissner D, Serdar Sariciftci N, Fromherz T, Rispens MT, Sanchez L, Hummelen JC. Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater, 11, 374 (2001). http://dx.doi.org/10.1002/1616-3028(200110)11:5<374::aidadfm374>3.0.co;2-w.
  38. Ma W, Yang C, Gong X, Lee K, Heeger AJ. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 15, 1617 (2005). http://dx.doi.org/10.1002/adfm.200500211.
  39. Dante M, Peet J, Nguyen TQ. Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C, 112, 7241 (2008). http://dx.doi.org/10.1021/jp712086q.
  40. Kim K, Liu J, Namboothiry MAG, Carroll DL. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl Phys Lett, 90, 163511 (2007). http://dx.doi.org/10.1063/1.2730756.
  41. Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, De Boer B, Van Duren JKJ, Janssen RAJ. Compositional dependence of the performance of poly(p-phenylene vinylene):Methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 15, 795 (2005). http://dx.doi.org/10.1002/adfm.200400345.
  42. Savenije TJ, Kroeze JE, Wienk MM, Kroon JM, Warman JM. Mobility and decay kinetics of charge carriers in photoexcited PCBM/PPV blends. Phys Rev B, 69, 155205 (2004). http://dx.doi.org/10.1103/PhysRevB.69.155205.
  43. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater, 4, 864 (2005). http://dx.doi.org/10.1038/nmat1500.
  44. Mihailetchi VD, Xie H, De Boer B, Koster LJA, Blom PWM. Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells. Adv Funct Mater, 16, 699 (2006). http://dx.doi.org/10.1002/adfm.200500420.
  45. Moule AJ, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv Funct Mater, 19, 3028 (2009). http://dx.doi.org/10.1002/adfm.200900775.
  46. Wei Q, Nishizawa T, Tajima K, Hashimoto K. Self-organized buffer layers in organic solar cells. Adv Mater, 20, 2211 (2008). http://dx.doi.org/10.1002/adma.200792876.
  47. Cravino A, Sariciftci NS. Organic electronics: molecules as bipolar conductors. Nat Mater, 2, 360 (2003). http://dx.doi.org/10.1038/nmat915.
  48. Cravino A, Sariciftci NS. Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem, 12, 1931 (2002). http://dx.doi.org/10.1039/b201558g.
  49. Zhao GJ, He YJ, Li Y. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater, 22, 4355 (2010). http://dx.doi.org/10.1002/adma.201001339.
  50. Konya Z, Vesselenyi I, Niesz K, Kukovecz A, Demortier A, Fonseca A, Delhalle J, Mekhalif Z, Nagy JB, Koos AA, Osvath Z, Kocsonya A, Biro LP, Kiricsi I. Large scale production of short functionalized carbon nanotubes. Chem Phys Lett, 360, 429 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00900-4.
  51. Pierard N, Fonseca A, Konya Z, Willems I, Van Tendeloo G, Nagy JB. Production of short carbon nanotubes with open tips by ball milling. Chem Phys Lett, 335, 1 (2001). http://dx.doi.org/10.1016/s0009-2614(01)00004-5.
  52. Khabashesku VN, Billups WE, Margrave JL. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res, 35, 1087 (2002). http://dx.doi.org/10.1021/ar020146y.
  53. Lim JK, Yun WS, Yoon MH, Lee SK, Kim CH, Kim K, Kim SK. Selective thiolation of single-walled carbon nanotubes. Synth Met, 139, 521 (2003). http://dx.doi.org/10.1016/s0379-6779(03)00337-0.
  54. Ma PC, Mo SY, Tang BZ, Kim JK. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 48, 1824 (2010). http://dx.doi.org/10.1016/j.carbon.2010.01.028.
  55. Yan D, Wang F, Zhao Y, Liu J, Wang J, Zhang L, Park KC, Endo M. Production of a high dispersion of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes using an electrostatic technique. Mater Lett, 63, 171 (2009). http://dx.doi.org/10.1016/j.matlet.2008.09.018.
  56. Yang SJ, Choi JY, Chae HK, Cho JH, Nahm KS, Park CR. Preparation and enhanced hydrostability and hydrogen storage capacity of $CNT{\copyright}MOF-5$ hybrid composite. Chem Mater, 21, 1893 (2009). http://dx.doi.org/10.1021/cm803502y.
  57. Hueso JL, Espinos JP, Caballero A, Cotrino J, Gonzalez-Elipe AR. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon, 45, 89 (2007). http://dx.doi.org/10.1016/j.carbon.2006.07.021.
  58. Tusek L, Nitschke M, Werner C, Stana-Kleinschek K, Ribitsch V. Surface characterisation of NH3 plasma treated polyamide 6 foils. Colloids Surf Physicochem Eng Aspects, 195, 81 (2001). http://dx.doi.org/10.1016/s0927-7757(01)00831-7.
  59. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 50, 3 (2012). http://dx.doi.org/10.1016/j.carbon.2011.08.011.
  60. O'Connell MJ, Bachilo SH, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). http://dx.doi.org/10.1126/science.1072631.
  61. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett, 3, 1379 (2003). http://dx.doi.org/10.1021/nl034524j.
  62. Saini V, Li Z, Bourdo S, Dervishi E, Xu Y, Ma X, Kunets VP, Salamo GJ, Viswanathan T, Biris AR, Saini D, Biris AS. Electrical, optical, and morphological properties of p3ht-mwnt nanocomposites prepared by In situ polymerization. J Phys Chem C, 113, 8023 (2009). http://dx.doi.org/10.1021/jp809479a.
  63. Sui XM, Giordani S, Prato M, Wagner HD. Effect of carbon nanotube surface modification on dispersion and structural properties of electrospun fibers. Appl Phys Lett, 95, 233113 (2009). http://dx.doi.org/10.1063/1.3272012.
  64. Kubota K, Sano M, Masuko T. Microwave irradiation for chemical modification of carbon nanotubes for better dispersion. Jpn J Appl Phys, 44, 465 (2005). http://dx.doi.org/10.1143/jjap.44.465.
  65. Yang K, Gu M. The effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym Eng Sci, 49, 2158 (2009). http://dx.doi.org/10.1002/pen.21461.
  66. Zhao W, Liu YT, Feng QP, Xie XM, Wang XH, Ye XY. Dispersion and noncovalent modification of multiwalled carbon nanotubes by various polystyrene-based polymers. J Appl Polym Sci, 109, 3525 (2008). http://dx.doi.org/10.1002/app.28453.
  67. Yan Y, Cui J, Potschke P, Voit B. Dispersion of pristine singlewalled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon, 48, 2603 (2010). http://dx.doi.org/10.1016/j.carbon.2010.03.065.
  68. Zou J, Liu L, Chen H, Khondaker SI, McCullough RD, Huo Q, Zhai L. Dispersion of pristine carbon nanotubes using conjugated block copolymers. Adv Mater, 20, 2055 (2008). http://dx.doi.org/10.1002/adma.200701995.
  69. Zhang Z, Che Y, Smaldone RA, Xu M, Bunes BR, Moore JS, Zang L. Reversible dispersion and release of carbon nanotubes using foldable oligomers. J Am Chem Soc, 132, 14113 (2010). http://dx.doi.org/10.1021/ja104105n.
  70. Lovell CS, Wise KE, Kim JW, Lillehei PT, Harrison JS, Park C. Thermodynamic approach to enhanced dispersion and physical properties in a carbon nanotube/polypeptide nanocomposite. Polymer, 50, 1925 (2009). http://dx.doi.org/10.1016/j.polymer.2009.02.016.
  71. Sun G, Chen G, Liu J, Yang J, Xie J, Liu Z, Li R, Li X. A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer, 50, 5787 (2009). http://dx.doi.org/10.1016/j.polymer.2009.10.007.
  72. Hermant MC, Klumperman B, Kyrylyuk AV, Van Der Schoot P, Koning CE. Lowering the percolation threshold of single-walled carbon nanotubes using polystyrene/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) blends. Soft Matter, 5, 878 (2009). http://dx.doi.org/10.1039/b814976c.
  73. Arnold MS, Stupp SI, Hersam MC. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett, 5, 713 (2005). http://dx.doi.org/10.1021/nl050133o.
  74. Yu B, Hou PX, Li F, Liu B, Liu C, Cheng HM. Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon, 48, 2941 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.032.
  75. Cordeiro CE, Delfino A, Frederico T. Theoretical study of work function of conducting single-walled carbon nanotubes by a nonrelativistic field theory approach. Carbon, 47, 690 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.004.
  76. Ago H. Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B, 103, 8116 (1999). http://dx.doi.org/10.1021/jp991659y.
  77. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO. Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater, 23, 629 (2011). http://dx.doi.org/10.1002/adma.201003296.
  78. Kymakis E, Amaratunga GAJ. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett, 80, 112 (2002). http://dx.doi.org/10.1063/1.1428416.
  79. Landi BJ, Raffaelle RP, Castro SL, Bailey SG. Single-wall carbon nanotube-polymer solar cells. Prog Photovolt Res Appl, 13, 165 (2005). http://dx.doi.org/10.1002/pip.604.
  80. Nogueira AF, Lomba BS, Soto-Oviedo MA, Correia CRD, Corio P, Furtado CA, Hümmelgen IA. Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups. J Phys Chem C, 111, 18431 (2007). http://dx.doi.org/10.1021/jp074979n.
  81. Bhattacharyya S, Kymakis E, Amaratunga GAJ. Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem Mater, 16, 4819 (2004). http://dx.doi.org/10.1021/cm0496063.
  82. Berson S, De Bettignies R, Bailly S, Guillerez S, Jousselme B. Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater, 17, 3363 (2007). http://dx.doi.org/10.1002/adfm.200700438.
  83. Hatton RA, Blanchard NP, Tan LW, Latini G, Cacialli F, Silva SRP. Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Org Electron, 10, 388 (2009). http://dx.doi.org/10.1016/j.orgel.2008.12.013.
  84. Pradhan B, Batabyal SK, Pal AJ. Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett, 88, 093106 (2006). http://dx.doi.org/10.1063/1.2179372.
  85. Yang SJ, Park CR. Facile preparation of monodisperse ZnO quantum dots with high quality photoluminescence characteristics. Nanotechnology, 19, 035609 (2008). http://dx.doi.org/10.1088/0957-4484/19/03/035609.
  86. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater, 11, 1281 (1999). http://dx.doi.org/10.1002/(sici)1521-4095(199910)11:15<1281::aid-adma1281>3.0.co;2-6.
  87. Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 23, 1482 (2011). http://dx.doi.org/10.1002/adma.201003188.
  88. Yun D, Feng W, Wu H, Li B, Liu X, Yi W, Qiang J, Gao S, Yan S. Controllable functionalization of single-wall carbon nanotubes by in situ polymerization method for organic photovoltaic devices. Synth Met, 158, 977 (2008). http://dx.doi.org/10.1016/j.synthmet.2008.06.025.
  89. Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells, 87, 733 (2005). http://dx.doi.org/10.1016/j.solmat.2004.07.047.
  90. Kymakis E, Kornilios N, Koudoumas E. Carbon nanotube doping of P3HT : PPPCBM photovoltaic devices. J Phys D: Appl Phys, 41, 165110 (2008). http://dx.doi.org/10.1088/0022-3727/41/16/165110.
  91. Stylianakis MM, Mikroyannidis JA, Kymakis E. A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Sol Energy Mater Sol Cells, 94, 267 (2010). http://dx.doi.org/10.1016/j.solmat.2009.09.013.
  92. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  93. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58.
  94. Nagashio K, Nishimura T, Kita K, Toriumi A. Mobility variations in mono- and multi-layer graphene films. Appl Phys Express, 2, 025003 (2009). http://dx.doi.org/10.1143/apex.2.025003.
  95. McCann E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B, 74, 161403 (2006). http://dx.doi.org/10.1103/PhysRevB.74.161403.
  96. Han MY, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 98, 206805 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805.
  97. Boukhvalov DW, Katsnelson MI. Tuning the gap in bilayer graphene using chemical functionalization: density functional calculations. Phys Rev B, 78, 085413 (2008). http://dx.doi.org/10.1103/PhysRevB.78.085413.
  98. Avouris P. Graphene: electronic and photonic properties and devices. Nano Lett, 10, 4285 (2010). http://dx.doi.org/10.1021/nl102824h.
  99. Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nature Nanotechnol, 3, 491 (2008). http://dx.doi.org/10.1038/nnano.2008.199.
  100. Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P. Tuning the graphene work function by electric field effect. Nano Lett, 9, 3430 (2009). http://dx.doi.org/10.1021/nl901572a.
  101. Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229 (2008). http://dx.doi.org/10.1126/science.1150878.
  102. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.
  103. Muszynski R, Seger B, Kamat PV. Decorating graphene sheets with gold nanoparticles. J Phys Chem C, 112, 5263 (2008). http://dx.doi.org/10.1021/jp800977b.
  104. Pei S, Zhao J, Du J, Ren W, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48, 4466 (2010). http://dx.doi.org/10.1016/j.carbon.2010.08.006.
  105. Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nature Chem, 1, 403 (2009). http://dx.doi.org/10.1038/nchem.281.
  106. Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano, 5, 4380 (2011). http://dx.doi.org/10.1021/nn1030725.
  107. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 4, 3169 (2010). http://dx.doi.org/10.1021/nn100551j.
  108. Liu Q, Liu Z, Zhang X, Zhang N, Yang L, Yin S, Chen Y. Organic photovoltaic cells based on an acceptor of soluble graphene. Appl Phys Lett, 92, 223303 (2008). http://dx.doi.org/10.1063/1.2938865.
  109. Hill CM, Zhu Y, Pan S. Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices. ACS Nano, 5, 942 (2011). http://dx.doi.org/10.1021/nn1022457.
  110. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater, 20, 3924 (2008). http://dx.doi.org/10.1002/adma.200800366.
  111. Yu D, Park K, Durstock M, Dai L. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J Phys Chem Lett, 2, 1113 (2011). http://dx.doi.org/10.1021/jz200428y.
  112. Ryu MS, Jang J. Effect of solution processed graphene oxide/ nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic. Sol Energy Mater Sol Cells, 95, 2893 (2011). http://dx.doi.org/10.1016/j.solmat.2011.06.008.
  113. Yin B, Liu Q, Yang L, Wu X, Liu Z, Hua Y, Yin S, Chen Y. Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. J Nanosci Nanotechnol, 10, 1934 (2010). http://dx.doi.org/10.1166/jnn.2010.2107.
  114. Tu KH, Li SS, Li WC, Wang DY, Yang JR, Chen CW. Solution processable nanocarbon platform for polymer solar cells. Energy Environ Sci, 4, 3521 (2011). http://dx.doi.org/10.1039/c1ee01333e.
  115. Liu Q, Ren W, Chen ZG, Yin L, Li F, Cong H, Cheng HM. Semiconducting properties of cup-stacked carbon nanotubes. Carbon, 47, 731 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.005.
  116. Zhu H, Wei J, Wang K, Wu D. Applications of carbon materials in photovoltaic solar cells. Sol Energy Mater Sol Cells, 93, 1461 (2009). http://dx.doi.org/10.1016/j.solmat.2009.04.006.

Cited by

  1. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells vol.2014, pp.1687-4129, 2014, https://doi.org/10.1155/2014/243041
  2. A review on carbon nanotube/polymer composites for organic solar cells vol.38, pp.13, 2014, https://doi.org/10.1002/er.3194
  3. Graphene Quantum Rings Doped PEDOT:PSS Based Composite Layer for Efficient Performance of Optoelectronic Devices vol.119, pp.34, 2015, https://doi.org/10.1021/acs.jpcc.5b05225
  4. Single- and multi-walled carbon nanotubes for solar cell applications vol.32, pp.21, 2018, https://doi.org/10.1142/S0217979218300074