• Title/Summary/Keyword: capillary model

Search Result 246, Processing Time 0.025 seconds

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

Development of an Environmentally Friendly Sewage Disposal Model for Agricultural and Fishing Village Areas (자연친화형 농어촌 하수처리장 모델개발)

  • Chung, Dong-Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.10-19
    • /
    • 1999
  • In 1991, the ministry of Gov't. Administration and Home Affairs set up a minimum of one sewage disposal plant in each province. By 1995, 264 models of the capillary infiltration method were set up in 331(78%) villages and the contact oxidation method was set up in 52 places. Since the Gov't. sent a letter to each responsible officer across the country stating their disapproval of the capillary infiltration method, the environmentally friendly sewage disposal system has not been diffused. The current model(mechanical sewage disposal) being used, in agricultural and fishing villages, costs too much for maintenance and operation(\50,000 per capita per year). In particular, because of the difference in sewage characteristics of agricultural and fishing villages from urban sewage, the efficiency of the disposal system is very low. Also, because of the growing need for more disposal plants, the Gov't. is looking for cheaper alternatives. This study has analyzed 2 kinds of sewage disposal. The first is used widely in agricultural and fishing villages in Germany. The second is used widely in similar areas of Korea. It has intended to analyze the characteristics, merits and defects of the sewage disposal water plants and pebbles model which is used widely in Germany and developed compatibly for Korea.

  • PDF

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

A Study of Thermocapillary Migration of a Liquid Slug (열모세관 현상에 의한 액체 슬러그 이동에 관한 연구)

  • Kim, Ho-Young;Kim, Yi-Gu;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1521-1527
    • /
    • 2004
  • Thermocapillary migration of a liquid slug is caused by temperature difference between the ends of a slug. The temperature difference induces the difference of the surface tension coefficient and consequently of capillary pressure between the ends of the slug. Presently available model to predict a velocity of thermocapillary migration adopts the Poiseuille equation which is valid only for a very long slug and neglects the shear stress near the contact line. In the present study, a new model has been developed to consider the shear stress near the contact line so that it can be applied to slugs or drops of general configuration. The experiments using mineral oil with the length to diameter ratio being 10 and a glass capillary were performed. It was found that the liquid slug began to move upon overcoming contact angle hysteresis when the temperature difference reached 35$^{\circ}C$. The results indicate that the new model well predicts the velocity of the liquid slug.

Comparison of C-reactive Protein between Capillary and Venous Blood in Children (소아에 있어서 C-반응성 단백의 모세혈 및 정맥혈 검사의 비교평가)

  • Jin, Ji Hoon;Jung, Soo Ho;Hong, Young Jin;Son, Byong Kwan;Kim, Soon Ki
    • Pediatric Infection and Vaccine
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Purpose : In evaluation of patients, laboratory results are crucial in determination of a treatment plan. Obtaining venous blood from infants and children is a difficult procedure. Substitution of a capillary blood sample for a venous blood sample has been suggested. However, there are few studies showing mutual correlation between C-reactive protein (CRP) results in capillary and venous blood. This study was designed to determine whether the result of the capillary sample is the same as the result of the venous blood sample. Methods : After informed consent, a pair of venous and fingertip capillary blood samples were simultaneously collected from 100 children. The LC-178CRPTM was used for analysis of capillary blood and the Hitachi 7180 automatic hematology analyzer was used for analysis of venous blood. We compared CRP of both venous and capillary blood samples. Results were analyzed by crosstabulation analysis, simple regression analysis and the Bland Altman Plot method. Results : A close correlation (90.63%) was observed between capillary and venous blood analyzed by crosstabulation analysis. CRP results were similar between the two groups and showed a high coefficient correlation ($\beta$=1.3434, $R^2$=0.9888, P<0.0001) when analyzed by a simple regression model. The average value in venous blood was also higher compared to capillary blood. According to Bland Altman Plot analysis, lab results were measured at a 95% confidence interval. Conclusion : CRP results from capillary blood showed close correlation with venous blood sampling. At present, venous blood sampling is the preferred method. However, due to difficulty in venous blood sampling, capillary sampling could be considered as an alternative technique for use with children.

Numerical study of strength reduction-induced capillary rise effect for unsaturated soil

  • Shwan, Bestun J.
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.385-393
    • /
    • 2022
  • Previous studies postulated insignificant capillary rise (hc) effect above the water table (Hw) for unsaturated soils. In addition, these studies utilised dry unit weight above Hw. This paper, therefore, addresses the effect of these postulations on strength where the influence of hc using a modified upper bound approach, Discontinuity Layout Optimization (UNSAT-DLO) for a simulated soil was predicted. Two different parametric studies to model passive earth pressure and bearing capacity problems are carried out to provide an insight into the effect of capillary rise on strength. Significant increase in strength, owing to unsaturated conditions, was obtained where the maximum increase was when suction slightly less or greater than the air entry suction. On the other hand, the results showed a negative effect of hc. For example, up to 8.24% decrease in passive thrust (Pp) was obtained at Hw=0 m when hc rose 1 m from 0 m. To put this into perspective, this was equivalent to a decrease of about 2° in 𝜙 at Hw=0 m and hc =0 m in order to obtain the same result at hc =1 m. For the bearing capacity problem, the effect was seen to be higher, up to 18.4% decrease in N𝛾 was obtained when hc rose from 0 m to 2.5 m at Hw =0 m. In addition, the results revealed a negative influence of assigning dry unit weight above Hw or hc.. However, considerable increase in strength was obtained when unsaturated unit weight above hc was assigned.

Strength Estimation Model for Early-Age Concrete Considering Microstructural Characteristics (미세구조 특성을 고려한 초기재령 콘크리트의 강도예측모델)

  • 황수덕;김의태;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.397-402
    • /
    • 2001
  • Microstructural characteristics such as hydrates and porosity greatly influence the development of concrete strength. In this study, a strength estimation model for early-age concrete considerig, the microstructural characteristics was proposed, which considers the effects of both an increment of degree of hydration and capillary porosity on a strength increment. Hydration modeling and compressive strength test with curing temperature and curing ages were carried out. By comparing test results with estimated strength, it is found that the strength estimation model can estimate compressive strength of early-age concrete with curing ages and curing temperature within a margin of error.

  • PDF

Design and Development of Thermoacoustic Rdfrierator : I. Acoustic Analysis of Resonator and Prediction of Energy Conversion (열음향 냉동기의 설계 및 개발 : I. 내부공간의 음향해석 및 에너지 변환 예측)

  • Park, Chul-Min;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.44-52
    • /
    • 1996
  • Acoustical characteristics of internal pipe structures and a loudspeaker of the thermoacoustic refrigerator are analyzed by using the transfer matrix method. The resonator system is dismantled into verious basic acoustic elements, and then linearized transfer matrices are serially combined with the dynamical system of linearized loudspeaker model, that the total system of thermoacoustic refrigerator can be analyzed in terms of frequency characteristics and acoustic field shape. Additionally, by using equations for energy flow through the capillary stack, the temperature distribution over the stack is numerically estimated. After expressing the acoustic work flow, thermoacoustic flow, and energy loss per unit length in a single capillary duct by using the transverse functional variations, overall energy flow rate and energy balance are obtained for the whole capillary stack. The final expression for energy flow through the stack is numerically evaluated by varying physical parameters obtained from the sound field analysis. After confirming good agreements between predicted and experimental results for the interior sound field of a refrigerator model, the thermoacoustic characteristics of Hofler's apparatus is analyzed by the proposed method and it is observed that the results agree well with Hofler's experimental results.

  • PDF

Modeling of the Tensile Strength of Unsaturated Granular Soil Using Soil-water Characteristic Curve (흙-수분 특성 곡선을 이용한 불포화모래의 인장강도 모델링)

  • Kim Tae-Hyung;Kim Chan-Kee;Kim Tae-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.171-181
    • /
    • 2004
  • This study was conducted to explore the tensile strength models in granular soil at the full range of unsaturated state. Direct tension experiments were carried out with a newly developed direct tension technique. The measured experimental data were compared with theoretical models developed by Rumpf and Schubert for monosized ideal particulate solids at the unsaturated state. To do this, the soil-water characteristic curve obtained from a suction-saturation experiment was used to define the unsaturation state and the negative pore water pressure with different water content levels, which are important factors in theoretical tensile strength models. The nonlinear behavior of the tensile strength for unsaturated granular soil at the pendular state is appropriately simulated with Rumpf's model. For the funicular and capillary states, the predicted trend by Schubert's model is properly matched with the experimental data: tensile strength steadily increases and reaches a maximum value and then decreases until it reaches zero. This comparison supports the concept that the tensile strength of unsaturated real granular soil can be approximately simulated with theoretical models.

A study on the performance of a split system inverter air-conditioner at different operation conditions (분리형 인버터 에어컨의 운전조건에 따른 성능 연구)

  • Kim, Man-Hoe
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 1998
  • The performance evaluation of a residential split system inverter air-conditioner has been conducted analytically and experimentally at different system operating conditions. A simulation program for modelling an air-conditioning system which consists of a compressor, a condenser, a capillary tube, an evaporator and related attachments was developed on the basis of the Oak Ridge heat pump design model, MARK III. The accuracy of the simulation results for the compressor frequencies of 32, 68 and 79 Hz for the residential split system inverter air-conditioner has been estimated by comparing calculation results to the experimental data and parametric study has been performed to investigate the effect of design parameters and operation conditions on the system performance.