Modeling of the Tensile Strength of Unsaturated Granular Soil Using Soil-water Characteristic Curve

흙-수분 특성 곡선을 이용한 불포화모래의 인장강도 모델링

  • Published : 2004.09.01

Abstract

This study was conducted to explore the tensile strength models in granular soil at the full range of unsaturated state. Direct tension experiments were carried out with a newly developed direct tension technique. The measured experimental data were compared with theoretical models developed by Rumpf and Schubert for monosized ideal particulate solids at the unsaturated state. To do this, the soil-water characteristic curve obtained from a suction-saturation experiment was used to define the unsaturation state and the negative pore water pressure with different water content levels, which are important factors in theoretical tensile strength models. The nonlinear behavior of the tensile strength for unsaturated granular soil at the pendular state is appropriately simulated with Rumpf's model. For the funicular and capillary states, the predicted trend by Schubert's model is properly matched with the experimental data: tensile strength steadily increases and reaches a maximum value and then decreases until it reaches zero. This comparison supports the concept that the tensile strength of unsaturated real granular soil can be approximately simulated with theoretical models.

본 연구는 불포화 상태 전 범위에 대한 사질토의 인장강도 모델화 가능성을 조사하기 위해 실시 되었다. 새로 개발된 직접인장시험기법을 이용하여 인장시험이 실시되었다. 측정된 결과는 Rumpf 및 Schubert가 동일크기의 이상적인 구에 대해 개발한 이론적인 인장강도 모델들에 의한 예측 값과 비교 되었다. 이를 위해 석션-포화실험을 통해 얻어진 흙-수분특성곡선을 이용하여 이론모델에 있어 중요한 요소인 불포화상태(pendular, funicular, capillary) 구분 및 음의 간극수압 값을 산정하는데 사용하였다. Pendular 상태에서 불포화모래의 비선형 거동이 Rumpf의 모델에 의해 적절이 묘사되었다. Funicular 및 capillary상태의 경우, 함수비가 증가함에 따라 인장강도가 증가하다 최고 값이 도달한 후 다시 감소하는 실험 측정치의 경향도 Schubert의 모델에 의해 적절히 묘사되었다. 본 비교 연구는 이상적인 단일 크기의 입자에 대해 개발된 이론적인 모델이 다양한 크기를 갖는 불포화 사질토의 인장강도를 예측할 수 있다는 가능성을 뒷받침해준다.

Keywords

References

  1. Al-Hussaini, M. M. and Townsend, F. C. (1973), Tensile testing of soils, a literature review, U.S. Army Engineer Waterways Experiment Station
  2. Cho, G. C. and Santamarina, J. C. (2001), 'Unsaturated particulate materials-particle-level studies', Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.1, pp.113-144
  3. Fang, H. Y and Chen, W. F. (1971), 'Further study of double-punch test for tensile strength of soils', Proceeding of the Third Southeast Asian Conference on Soil Engineering, pp.211-215
  4. Fisher, R. A (1926), 'On the capillary forces in an ideal soil: correction of formulas by Haines, W. B.', Journal of Agriculture Science, Vol.16, pp.492-505 https://doi.org/10.1017/S0021859600007838
  5. Fredlund, D. G., Xing, A, and Huang, S. (1994), 'Predicting the permeability function for unsaturated soils using the soil water characteristic curve', Canadian Geotechnical Journal, Vol.31, pp. 533-546 https://doi.org/10.1139/t94-062
  6. Fredlund, D. G and Rahardjo, H. (1995), Soil mechanics for unsaturated soils, John Wiley & Sons, Inc., New York
  7. Fredlund, D. G., Xing, A, Fredlund, M. D., and Barbour, S. L. (1996), 'The relationship of the unsaturated soil shear strength to the soil water characteristiccurve', Canadian GeotechnicalJournal, Vol.32, pp.440-448
  8. Hwang; C. and Kim, T.-H. (2003), 'Determination of the soil-water characteristic curve using the flow pump technique', Journal of the Korean Geotechnical Society, Vol.19, No.5, pp.155-162
  9. Hwang, C. and Kim, T.-H. (2004), 'Determination of the un-saturated hydraulic conductivity function', Journal of the Korean Geotechnical Society, Vol.20, No.3, pp.47-51
  10. Kim, T.-H. (2002a), 'Effect of moisture on tensile strength', Journal of the Korean GeotechnicalSociety, Vol.18, No.3, pp.13-21
  11. Kim, T.-H. (2002b), 'Experimental investigations on tensile strength on sand at low moisture contents', Journal of the Korean Geo-technical Society, Vol.18, No.3, pp.23-31
  12. Mikulitsch, W. A. and Gudehus, G. (1995), 'Uniaxial tension, biaxial loading and wetting tests on loess', Proceedings of $1^{st}$ International Conference on Unsaturated Soils. Alonso & Delages (eds), pp.45-150
  13. Pierrat, P. and Caram, H. S. (1997), 'Tensile strength of wet granular materials', Powder Technology, Vol.91, pp.83-93 https://doi.org/10.1016/S0032-5910(96)03179-8
  14. Rahardjo, H. and Fredlund, D. G. (1995), 'Pore pressure and volume change behavior during undrained and drained loadings of an unsaturated soil', Proceedings ofthe $1^{st}$ International Conference on Unsaturated Soils, Alonso & Delages (eds), pp.165-170
  15. Rumpf, H. (1961), The strength of granules and agglomerates, Agglomeration, W.A. Knepper, (ed), Interscience, New York.
  16. Schubert, H., Herrmann, W. and Rumpf, H. (1975), 'Deformation behavior of agglomerates under tensile stress', Powder Technology, Vol.11, pp.121-131 https://doi.org/10.1016/0032-5910(75)80037-4
  17. Schubert, H. (1984), 'Capillary forces-modeling and application in particulate technology', Powder Technology, Vol.37, pp.105-116 https://doi.org/10.1016/0032-5910(84)80010-8
  18. Yong, R.N., Townsend, F.C. eds. (1981), 'Laboratory shear strength of soil', ASTM STP, No.740, pp.717
  19. Znidarcic, D., Illangasekare, T. and Manna, M. (1991), 'Laboratory testing and parameter estimation for two-phase flow problems', ASCE Geotechnical Special Publications, Vol.27, pp.1089-1099