Influence of Rainfall-induced Wetting on Unsaturated Weathered Slopes

강우시 국내 불포화 풍화토 사면에서의 습윤영향 분석

  • Published : 2004.09.01

Abstract

Surface failures of slopes in weathered soil are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the infiltrating water. This paper reports trends of rainfall-induced wetting band depth in two types of weathered soils that are commonly found in Korea. Both theoretical and numerical analyses are presented based on the soil-water characteristic curve (SWCC) obtained using filter paper as well as tensiometer tests. It is found that the magnitude of wetting front suction plays a key role in the stability of slopes in weathered soils. Theoretical analysis based on modified Green and Ampt model tends to underestimate the wetting band depth for typical Korean weathered soils. It was also deduced that for Korean weathered soils, the factor of safety drops rapidly once the wetting band depth of 1.2 m is reached.

얕은사면 파괴는 지표로 침투하는 강우에 의해 주로 발생한다. 이는 지표수의 침투시 모관흡수력의 감소에 의한 포화깊이 증가에 의해 발생한다. 본 연구에서는 국내의 전형적인 화강풍화토를 대상으로 강우시 사면에서의 습윤영향을 분석하였다. 이를 위하여 filter paper와 tensiometer 실험을 수행하여 함수특성곡선을 산정하였으며, 그에 따른 함수특성곡선의 방정식을 추정하였으며, 기존에 사용되고 있는 Green & Ampt의 포화 깊이 추정식과 수치해석결과를 비교 분석하였다. 본 연구 결과, Green & Ampt모델에 의한 이론 해는 포화깊이를 과소 추정하였으며, 포화깊이가 증가함에 따라 사면안전율은 감소하는 것으로 나타났다. 특히 포화깊이가 약 1.2m이상부터 사면안전율은 현저하게 감소하는 것으로 나타났다.

Keywords

References

  1. ASTM (2000), Annual Book of ASTM Standards: Measurement of Soil Potential (Suction) Using Filter Paper. Vol.04.08, D5298-94, pp.154-159
  2. Chow, V. T., Maidment, D. R. and Mays, L. W. (1988), Applied Hydrology, McGraw-Hill, New York
  3. Fourie, A. B., Rowe, D. and Blight, G. E. (1999), 'The effect of infiltration on the stability of the slopes of a dry ash dump', Ge otechnique, Vol.49, No.1, pp.1-13
  4. Fredlund, D. G. and Xing, A. (1994), 'Equations for the soil-water characteristic curve', Canadian Geotechnical Journal, Vol.31, pp.521-532 https://doi.org/10.1139/t94-061
  5. Fredlund, D. G. and Rahardjo, H. (1993), Soil Mechanics for Unsaturated Soils, John Wiley and Sons
  6. Geo-Slope (1998), User's manual for SEEP/W and SLOPE/W: Version 4, Geo-Slope International Ltd, Canada.
  7. Green, W. H. and Ampt, G. A. (1911), 'Studies on soil physics. 1: The flow of air and water through soils', J. Agric. Sci., Vol.4, No.1, pp.1-24 https://doi.org/10.1017/S0021859600001441
  8. Holtz, R.D. and Kovacs, W.D. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall Inc, USA
  9. Kim, S. I., Park, C. H., Lee, S. R. and Jeong, S. S. (1994), Report of the Stability Analysis of Natural Slope of Yongseong Industrial Complex in Yeocheon, Lucky-Development Company, Korea
  10. Lee, S. G. and de Freitas. M. H. (1989), 'A revision of the description and classification of weathered granite and its appli-cation to granites in Korea', J. of Engrg. Geol., Vol.22, No.1, pp.31-48 https://doi.org/10.1144/GSL.QJEG.1989.022.01.03
  11. Leong, E. C. and Rahardjo, H. (1997), 'Review of Soil-Water Characteristic Curve Equations', Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.12, pp.1106-1117 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1106)
  12. Leong, E.C., He, L. and Rahardjo, H. (2002), 'Factors affecting the filter paper method for total and matric suction measurements', Geotechnical Testing Journal, Vol.25, No.3, pp.1-12
  13. Lumb, P. B. (1962), 'Effects of rain storms on slope stability', Symp. on Hong Kong Soils, Hong Kong, pp.73-87
  14. Lumb, P. B. (1975), 'Slope failures in Hong Kong', Q. J. Engng Geol, Vol.8, pp.31-65 https://doi.org/10.1144/GSL.QJEG.1975.008.01.02
  15. Maidment, David R. (1993), Handbook of hydrology. David R. Maidment, McGraw-Hill, pp.5.32-5.51
  16. Moore, R. E. (1939), 'Water conduction from shallow water tables', Hilgardia, Vol.12, No.6, pp.383-426 https://doi.org/10.3733/hilg.v12n06p383
  17. Ng, C. W. W. and Shi, Q. (1998), 'A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage', Computers and Geotechnics, Vol.22, No.1, pp.1-28 https://doi.org/10.1016/S0266-352X(97)00036-0
  18. Pradel D. and Raad G. (1993), 'Effect of Permeability on Surficial Stability of Homogeneous Slopes', Journal of Geotechnical Engineering, Vol.119, No.2, pp.315-332 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(315)
  19. Rahardjo, H., Lim, T. T., Chang, M. F., and Fredlund, D. G. (1995), 'Shear-strength characteristics of a residual soil', Canadian Geotechnical Journal, Vol.32, pp.60-77 https://doi.org/10.1139/t95-005
  20. Rawls, W. J., Brakensiek, D. L. and Soni, B. (1983), 'Agricultural Management Effects on Soil Water Processes: Part I . Soil Water Retention and Green-Ampt Parameters. Trans', American Society of Agricultural Engineers, Vol.26, No,6, pp.1747-1752 https://doi.org/10.13031/2013.33837
  21. Skagg, R .W. and Khaleel, R. (1982), 'Hydrologic Modeling of Small Watersheds, Monograph 5', Infiltration. In C.T. Haan, ed. American Society of Agricultural Engineers, St. Joseph, Mich., pp.4-166
  22. Van Genuchten, M. T. (1980), 'A closed-form equation for predicting the hydraulic conductivity of unsaturated soils', J. Soil Sci. Soc. Am., Vol.44, pp.892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x
  23. Vanapalli, S. K., Fredlund, K. G., Pufahl, D. E. and Clifton, A. W. (1996), 'Model for prediction of shear strength with respect to matric suction', Canadian Geotechnical Journal, Vol.33, pp. 379-392 https://doi.org/10.1139/t96-060