• Title/Summary/Keyword: camera image

Search Result 4,917, Processing Time 0.032 seconds

A High-speed Automatic Mapping System Based on a Multi-sensor Micro UAV System (멀티센서 초소형 무인항공기 기반의 고속 자동 매핑 시스템)

  • Jeon, Euiik;Choi, Kyoungah;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • We developed a micro UAV based rapid mapping system that provides geospatial information of target areas in a rapid and automatic way. Users can operate the system easily although they are inexperienced in UAV operation and photogrammetric processes. For the aerial data acquisition, we constructed a micro UAV system mounted with a digital camera, a GPS/IMU, and a control board for the sensor integration and synchronization. We also developed a flight planning software and data processing software for the generation of geo-spatial information. The processing software operates automatically with a high speed to perform data quality control, image matching, georeferencing, and orthoimage generation. With the system, we have generated individual ortho-images within 30 minutes from 57 images of 3cm resolution acquired from a target area of $400m{\times}300m$.

A Comparative Study on the 3D Positioning Methods by CCD Images of The Mobile Mapping System (차량측량시스템의 CCD 영상에 의한 3차원 위치결정 방법 비교 연구)

  • Jeong, Dong-Hoon
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.169-180
    • /
    • 2007
  • Applicability of Land-based MMS(Mobile Mapping System) having been increased gradually as digitalization of administrative operation and construction of integrated systems of the government and provincial government are growing up. As these requirements, the case can be occurred that the facilities should be surveyed rapidly in the specific area. At this case, the real time field processing method is more necessary than the post processing method and data processing speed should be an essential element as important as accuracy. In this study, the two space intersection methods used in photogrammetry were programmed and compared with each other to select more proper method for the three dimensional positioning in the field processing. Especially, at the analytic space intersection, the traditional close range terrestrial photogrammetry was modified and applied to that to adapt to MMS's characteristics that camera position and attitude are changed according to the vehicle movement. As a result, the difference of the accuracy between two methods is not significant but at the calculation time, the analytic space intersection is faster three times than the space intersection using collinearity condition.

  • PDF

COMPONENT-BASED DEVELOPMENT OF OBSERVATIONAL SOFTWARE FOR KASI SOLAR IMAGING SPECTROGRAPH

  • Choi, Seong-Hwan;Kim, Yeon-Han;Moon, Yong-Jae;Choi, Kyung-Seok;Park, Young-Deuk;Jang, Bi-Ho;Kim, Su-Jin;Kim, Kap-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.463-470
    • /
    • 2005
  • In this paper, we have made the component-based development of observational software for KASI solar imaging spectrograph (KSIS) that is able to obtain three-dimensional imaging spectrograms by using a scanning mirror in front of the spectrograph slit. Since 2002, the KASI solar spectrograph has been successfully operated to observe solar spectra for a given slit region as well as to inspect the response functions of narrow band filters. To improve its capability, we have developed the KSIS that can perform sequential observations of solar spectra by simultaneously controlling the scanning mirror and the CCD camera via Visual C++. Main task of this paper is to introduce the development of the component-based software for KSIS. Each component of the software is reusable on the level of executable file instead of source code because the software was developed by using CBD (component-based development) methodology. The main advantage of such a component-based software is that key components such as image processing component and display component can be applied to other similar observational software without any modifications. Using this software, we have successfully obtained solar imaging spectra of an active region (AR 10708) including a small sunspot. Finally, we present solar $H{\alpha}$ spectra ($6562.81{\AA}$) that were obtained at an active region and a quiet region in order to confirm the validity of the developed KSIS and its software.

A Study on Color Reproduction and Flatness of the LED Light Source in Broadcasting Lighting (방송조명에서 LED광원의 색 재현성과 평탄도 연구)

  • Kim, Young-Jin;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.538-551
    • /
    • 2016
  • At the on-site of broadcasting production, the light source of tungsten halogen has been used as a primary light source for representing video images. Although tungsten halogen light has drawn attention in terms of the color reproducibility which is more similar to the sun light than that of other light sources, meanwhile it had problems in energy efficiency. Recently, the LED light source with high efficiency and long lifetime of the energy source has started getting attention as a substitute light source at the broadcast field. Because of the unique light emission principles, compared with tungsten halogen, LED light source has different characteristics in the quality of the light projected from the light source and color reproduction of the video image through a camera. These characteristics cause the delayed introduction of the LED as the broadcast light source. In this study we measured the quality characteristics of the flatness of the color reproduction and light of the LED light source and will present the experimental data whether it is suitable as the broadcasting light source compared to a reference light source of tungsten halogen. In addition, we suggested the future challenges and standards which are needed to expand usage of LED as a broadcast light source.

Disparity-based Depth Scaling of Multiview Images (변이 기반 다시점 영상의 인식 깊이감 조절)

  • Jo, Cheol-Yong;Kim, Man-Bae;Um, Gi-Mun;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.796-803
    • /
    • 2008
  • In this paper, we present a depth scaling method for multiview images that could provide an 3D depth that a user prefers. Unlike previous works that change a camera configuration, the proposed method utilizes depth data in order to carry out the scaling of a depth range requested by users. From multivew images and their corresponding depth data, depth data is transformed into a disparity and the disparity is adjusted in order to control the perceived depth. In particular, our method can deal with multiview images captured by multiple cameras, and can be expanded from stereoscopic to multiview images. Based upon a DSCQS subjective evaluation test, our experimental results tested on an automultiscopic 3D display show that the perceived depth is appropriately scaled according to user's preferred depth.

A Study for the Broadcasting Makeup and Image Representation Changes in the Digital Media Era (디지털 미디어 시대의 방송 분장 변화에 관한 연구)

  • Barng, Kee-Jung;Kim, Kyung-Hee;Kim, Ju-Duck
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.6
    • /
    • pp.1194-1210
    • /
    • 2010
  • The influence of digital media according to environmental change of multi-media came to have significance more than what we imagine. In accordance with high resolution of HDTV in digital media era, the cautious awareness is required for skin color by the immediate color such as replica of TV color, lighting and clothing. As for the broadcasting makeup expression technique caused by a change in broadcasting environment in the digital media era, the first, There is necessity for natural makeup technique, and for expressing the whole makeup evenly and very delicately. The makeup work gets much more delicate. For the delicate expression, more time is being required than the existing makeup time. Second, Lots of time and manpower are required for elaborate real-object processing on all the production fields such as background set, stage properties, and makeup. Third, Realistic expression is available on the screen. Importance of basic makeup is highlighted. Thus, even the skin care shop came to be prevalent. Development in only HD cosmetics is needed for foundation with fine particle in new material and with diverse colors hereafter. The video-media field is a method that is ignored a sense of distance through vehicles such as camera, picture tube, and several kinds of broadcasting machinery and equipment and that is delivered vividly to viewers through screen, unlike the stage makeup, thereby being needed the makeup technology proper for HDTV according to the changing broadcasting environment and media. The video machinery and equipment are proceeding with being gradually high-tech and precise. Thus, an expert in makeup needs to know common sense on the video machinery and equipment before makeup, and needs to make an effort according to it. And, a follow-up research can be said to be necessary on the advance in makeup method and on more diverse dedicated cosmetics along with a research on color tone proper for HDTV.

Spray Charateristics of Water/Oil Emulsified Fuel in Pressure-Swirl Nozzle (압력선회노즐에서 물-기름 유화연료의 분무특성)

  • Rhim, J.H.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • The beneficial aspects of applying emulsion fuels to combustion systems may be due to the changes of fuel properties which lead to the enhanced atomization characteristics. The spray characteristics of water/oil emulsified fuel injected from the pressure-swirl(simplex) atomizer using for oil burner were investigated. Four different water contents from 10 to 40 % by volume at 10% increment were prepared by mixing with the different contents of surfactants. Total amount of surfactant used was varied from 1 to 3 % by volume. This study demonstrates the influence of water and surfactant contents of emulsified fuel, injection pressure on the spray characteristics, i.e. Sauter mean diameter(SMD) and spray angle. The drop size distribution of the emulsified fuel spray was measured with a Malvem particle sizer. In order to measure the spray angle, the digital image processing was employed by capturing multiple images of the spray with 3-CCD digital video camera. It was evident that the addition of water and surfactant changes fuel properties which are the key parameters influencing the atomization of the spray. The increase in surfactant content results in the decrease of SMD and the increase in spray angle. The droplets decease with increase in injection pressure, but the influence of injection pressure in this experimental condition was less important than expected. The more viscous fuel with the increase of water content exhibits the larger droplets in the centerline of the spray, and the less viscous fuel in the outer edges of the spray. The increase in axial position from the nozzle causes the spray angle to decrease. The spray angle decreases with increase in water content. This is due to increase in viscosity with increase in water content.

  • PDF

Analysis of Users' Gestures by Application in Smartphone Touch Interfaces (스마트폰 터치 인터페이스에서 애플리케이션별 사용자 제스처의 분석)

  • Kim, Jisun;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.9-14
    • /
    • 2015
  • Touch interface is widely used in a smartphone instead of a keyboard or a keypad interface that has been adopted in a PC or a featurephone, respectively. Touch interface can recognize a variety of gestures that clearly represent the distinct features of each application's input. This paper analyzes users' gesture of each application captured by the touch interface of a smartphone. Specifically, we extract touch input traces from various application categories such as game, web browser, youtube, image and e-book viewer, video player, camera, and map applications, and then analyzed them. Through this analysis, we observed a certain unique characteristics of each application's touch input, and this can be utilized in various useful areas such as identification of an application user, prevention of running an application by an illegal user, or design of a new interface convenient to a specific user.

Design and Implementation of Smart Home Security Monitoring System based on Raspberry Pi2 (라즈베리 파이2 기반의 스마트 홈 시큐리티 모니터링 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.131-136
    • /
    • 2016
  • In this paper, we propose an Raspberry Pi2-based smart home security monitoring system. Proposed home security monitoring system was configured using a relatively tractable main processor raspberry pi2, ultrasonic sensors, and PIR sensors. In addition, The picamera is compatible with raspberry pi2 was connected to the servo motor. And by driving the attacker's location the video was recording. The Web server stores data of the recorded image and the sensor, and provides a web page to enable the monitoring at all remote locations. When examining efficiency of proposed home security monitoring system it was found that proposed system is easier to be made than existing home security system and is able to minimize the blind spot of the camera by using servo motor and is efficient and convenient and stable as it enables a user to handle an error in person and it uses reliable data.

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF