• Title/Summary/Keyword: bulk stress

Search Result 289, Processing Time 0.031 seconds

EFFECT OF INCREMENTAL FILLING TECHNIQUE ON THE POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN (적층충전법이 복합레진의 중합수축에 미치는 영향)

  • Kim, Hyo-Suk;Lee, Nan-Young;Lee, Sang-Ho;Oh, You-Hyang
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.481-490
    • /
    • 2005
  • The aim of this study was to investigate the relationship between the C-factor and shrinkage strain values of composite resin and examine the strain values in different incremental filling techniques. The strain gauge method was used for measurement of polymerization shrinkge strain. Experiment was divided two step. In a first experiment, we compared with strain value in three different depth (2mm, 3mm, 4mm) and microhardness of each samples after 24hours were measured. In a second experiment, we examined the strain values in five different filling techniques(Group 1: bulk filling, Group 2: oblique incremental filling, Group 3: horizontal incremental filling, Group 4: vertical incremental filling, Group 5: lining of flowable resin and bulk filling) The results of the present study can be summarized as follows: 1. Composite resin in acrylic molds showed the initial expansion at the early phase of polymerization. 2. Contraction stress was not revealed significant difference between depth of 2mm and 3mm(P>0.05). 3. Contraction stress in sample of 4mm was showed the lowest value(P<0.05). 4. Microhardness of specimen was revealed more difference between upper and lower surface in depth of 4mm than 2 and 3mm(P<0.05). 5. Lining of flowable resin and bulk filling (Group 5) was showed the lowest contraction stress, Group 2 and 3 was showed the highest contraction stress(P<0.05). On the basis above results, the stress that result from the polymerization shrinkage, when incremental curing techniques are used, showed that there is no advantage in incremental placement and curing.

  • PDF

Charge Trapping Mechanism in Amorphous Si-In-Zn-O Thin-Film Transistors During Positive Bias Stress

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.380-382
    • /
    • 2016
  • The mechanism for instability under PBS (positive bias stress) in amorphous SIZO (Si-In-Zn-O) thin-film transistors was investigated by analyzing the charge trapping mechanism. It was found that the bulk traps in the SIZO channel layer and the channel/dielectric interfacial traps are not created during the PBS duration. This result suggests that charge trapping in gate dielectric, and/or in oxide semiconductor bulk, and/or at the channel/dielectric interface is a more dominant mechanism than the creation of defects in the SIZO-TFTs.

The study on effects of porosity, strain and grain size on B-H Hysteresis Ioop (기공율, 응력 및 입자 크기가 B-H Hysteresis loop 특성에 미치는 영향 연구)

  • 김성재;정명득;백종규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.89-93
    • /
    • 1994
  • Effects of density, inner-stress, and grain size on B-H hysteresis loop properties of Mg-ferrite were investigated. As the sintered bulk density increase, coercive force($H_c$) decreasand squareness ratio increase. Coercive force was very dependent on inner-stress in sintered body, so coercive force increase from 1.95[Oe] to 4.35[Oe] when inner stress present in bulk, however, the squareness ratio was almost not changed Coercive force and squareness ratio were independent on grain size of sintered body which is between 6-11[$\mu\textrm{m}$]

  • PDF

Helium/Oxygen Atmospheric Pressure Plasma Treatment on Poly(ethylene terephthalate) and Poly(trimethylene terephthalate) Knitted Fabrics: Comparison of Low-stress Mechanical/Surface Chemical Properties

  • Hwang Yoon Joong;McCord Marian G.;Kang Bok Choon
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Helium-oxygen plasma treatments were conducted to modify poly(trimethylene terephthalate) (PIT) and poly(ethylene terephthalate) (PET) warp knitted fabrics under atmospheric pressure. Lubricant and contamination removals by plasma etching effect were examined by weight loss $(\%)$ measurements and scanning electron microscopy (SEM) analysis. Surface oxidation by plasma treatments was revealed by x-ray photoelectron spectroscopy (XPS) analyses, resulting in formation of hydrophilic groups and moisture regain $(\%)$ enhancement. Low-stress mechanical properties (evaluated by Kawabata evaluation system) and bulk properties (air permeability and bust strength) were enhanced by plasma treatment. Increasing interfiber and interyarn frictions might play important roles in enhancing surface property changes by plasma etching effect, and then changing low-stress mechanical properties and bulk properties for both fabrics.

Developments in Hull Strength Monitoring (Developments in Hull Strength Monitoring)

  • P. A. Thomson;Ph. D BMT SeaTech Ltd.
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.143-143
    • /
    • 1996
  • Recent Class requirements and IMO recommendations concerning Hull Strength Monitoring (HSM) have prompted an increasing number of shipowner to adopt monitoring systems on bulk carriers and tanker. Such systems are designed to give warning when stress levels and the frequency and magnitude of ship motions approach levels which require corrective action. When fitted these systems provide enhanced operational safety and efficiency. This paper describes a development beyond the standard BMT HSM system through the integration of stress, motion and radar-based sea state monitoring with powerful, on-board, artificial intelligence (AI) tools. The latter utilises conceptual clustering techniques as an aid to pattern recognition in stress, fatigue. motion and sea state data clusters. This, in turn, provides additional operational guidance for ship's staff. Feedback from applications of the standard BMT HSM and extended HSM systems on board the British Steel Bulk Shipping fleet is described.

FINITE ELEMENT STRESS ANALYSIS OF CLASS V COMPOSITE RESIN RESTORATION SUBJECTED TO CAVITY FORMS AND PLACEMENT METHODS (와동 형태와 충전 방법에 따른 Class V 복합 레진 수복치의 유한요소법적 응력 분석)

  • Son, Yoon-Hee;Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.91-108
    • /
    • 2000
  • Most of cervical abrasion and erosion lesions show gingival margin where the cavosurface angle is on cementum or dentin. Composite resin restoration of cervical lesion shrink toward enamel margin due to polymerization contraction. This shrinkage has clinical problem such as microleakage and secondary caries. Several methods to diminish contraction stress of composite resin restoration, such as modifying cavity form and building up restorations in several increments have been attempted. The purpose of this study was to compare polymerization contraction stress of composite resin in Class V cavity subjected to cavity forms and placement methods. In this study, finite element model of 5 types of Class V cavity was developed on computer tomogram of maxillary central incisor. The types are : 1) Box cavity 2) Box cavity with incisal bevel 3) V shape cavity 4) V shape cavity with incisal bevel 5) Saucer shape cavity. The placement methods are 1) Incisal first oblique incremental curing 2) Bulk curing. An FEM based program for light activated polymerization is not available. For simulation of curing dynamics, time dependent transient thermal conduction analysis was conducted on each cavity and each placement method. For simulation of polymerization shrinkage, thermal stress analysis was performed with each cavity and each placement method. The time-temperature dependent volume shrinkage rate, elastic modulus, and Poisson's ratio were determined in thermal conduction data. The results were as follows : 1. With all five Class V cavifies, the highest Von Mises stress at the composite-tooth interface occurred at gingival margin. 2. With box cavity, V shape cavity and saucer cavity, Von Mises stress at gingival margin of V shape cavity was lower than the others. And that of box cavity was lower than that of saucer cavity. 3. Preparing bevel at incisal cavosurface margin decreased the rate of stress development in early polymerization stage. 4. Preparing bevel at incisal cavosurface margin of V shape cavity increased the Von Mises stress at gingival margin, but decreased at incisal margin. 5. At incisal margin, stress development by bulk curing method was rapid at early stage. Stress development by first increment of incremental curing method was also rapid but lower than that by bulk curing method, however after second increment curing final stress was the same for two placement methods. 6. At gingival margin, stress development by incremental curing method was suddenly rapid at early stage of second increment curing, but final stress was the same for two placement methods.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1049
    • /
    • 2007
  • Recently, a theoretically-sound design approach, using an elastic multilayer model, is attempted in trackbed designs for the construction of high speed railways and new lines of conventional railways. In the elastic multilayer model, the stress-dependent resilient modulus($E_R$) is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. In this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil(SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

  • PDF

Static load test of the bogie and vibration performance test, dynamic characteristics analysis of the bulk cement car (벌크시멘트화차의 대차 하중시험과 진동성능시험 및 동특성 해석 연구)

  • 홍재성;함영삼;백영남
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.186-193
    • /
    • 2003
  • The object of this study is to ensure the stability of bulk cement cars conducting vibration performance test, dynamic characteristic analysis and static load test of bogie frame. In case of static load test, bogie static load test facility was used. In case of dynamic characteristic analysis, Vampire Software was used. In case of vibration performance test, real bulk cement cars were used in kyeung-bu line. In the results of static load test of bogie frame for bulk cement car, all structures satisfied allowable stress criteria of materials. The vibration performance test and dynamic characteristic analysis results satisfied allowable standards.

Deformation behavior of Copper Amorphous Composites in Super Cooled Liquid Region (과냉각 구간에서 Cu-계 아몰퍼스 복합재의 변형거동)

  • Park E. S.;Kim J. S.;Kim H. J.;Bae J. C.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • Composites comprising various volume fractions of crystalline nickel and bulk amorphous (BA) were produced by means of electroless coating of nickel on BA powder of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ and subsequent spark plasma sintering (SPS) of coated BA powder. The flow curves of composites at various temperatures in the supercooled liquid region were determined by the uniaxial compression test with various strain rates. During compression at $450^{\circ}C$ with $\dot{\varepsilon}=2\times10^{-3}$, the monolithic BA sample and crystalline-BA composites displayed the superplastic deformation with $\varepsilon>1.4$. At temperatures above $460^{\circ}C$, the stress-strain curve of the monolithic BA sample depicted a sharp peak stress and a fellowing stress drop due to cracking, while those of the crystalline-BA composites displayed work-hardening up to the imposed strain. FEM analysis indicated that a fairly homogeneous strain state prevailed throughout the composite, while a higher level of stress was obtained in a harder BA.

  • PDF

Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders (분말 ECAP 공정 시 치밀화의 유한요소해석)

  • Yoon, Seung-Chae;Quang, Pham;Chun, Byong-Sun;Lee, Hong-Ro;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.415-420
    • /
    • 2006
  • Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.