DOI QR코드

DOI QR Code

Finite Element Analysis of Densification Behavior during Equal Channel Angular Pressing Process of Powders

분말 ECAP 공정 시 치밀화의 유한요소해석

  • Yoon, Seung-Chae (Department of Nano Materials Engineering, Chungnam National University) ;
  • Quang, Pham (Department of Nano Materials Engineering, Chungnam National University) ;
  • Chun, Byong-Sun (Department of Nano Materials Engineering, Chungnam National University) ;
  • Lee, Hong-Ro (Department of Nano Materials Engineering, Chungnam National University) ;
  • Kim, Hyoung-Seop (Department of Nano Materials Engineering, Chungnam National University)
  • 윤승채 (충남대학교 나노공학부) ;
  • 팜쾅 (충남대학교 나노공학부) ;
  • 천병선 (충남대학교 나노공학부) ;
  • 이홍로 (충남대학교 나노공학부) ;
  • 김형섭 (충남대학교 나노공학부)
  • Published : 2006.12.28

Abstract

Nanostructured metallic materials are synthesized by bottom-up processing which starts with powders for assembling bulk materials or top-down processing starting with a bulk solid. A representative bottom-up and top-down paths for bulk nanostructured/ultrafine grained metallic materials are powder consolidation and severe plastic deformation (SPD) methods, respectively. In this study, the bottom-up powder and top-down SPD approaches were combined in order to achieve both full density and grain refinement without grain growth, which were considered as a bottle neck of the bottom-up method using conventional powder metallurgy of compaction and sintering. For the powder consolidation, equal channel angular pressing (ECAP), one of the most promising method in SPD, was used. The ECAP processing associated with stress developments was investigated. ECAP for powder consolidation were numerically analyzed using the finite element method (FEM) in conjunction with pressure and shear stress.

Keywords

References

  1. H. S. Kim and Y. Estrin: Appl. Physics Lett., 79 (2001) 4115 https://doi.org/10.1063/1.1426697
  2. R. Z. Valiev and I. V. Alexandrov: Ann. Chim. Sci. Mat., 27 (2002) 3
  3. H. Gleiter: Nanostruct. Mater., 6 (1995) 3 https://doi.org/10.1016/0965-9773(95)00025-9
  4. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci., 45 (2000) 103 https://doi.org/10.1016/S0079-6425(99)00007-9
  5. H. S. Kim and D. N. Lee: Mater. Trans., 45 (2004) 1829 https://doi.org/10.2320/matertrans.45.1829
  6. S. C. Yoon, S. J. Hong, M. H. Seo, Y. G. Jeong and H. S. Kim: J. Kor. Powder Metall. Inst., 11 (2004) 233 https://doi.org/10.4150/KPMI.2004.11.3.233
  7. J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig and I. E. Anderson: J. Non-Cryst. Solids, 317 (2003) 114
  8. S. Y. Chang, K. S. Lee, S. H. Choi and D. H. Shin: J. Alloys Comp., 354 (2003) 216 https://doi.org/10.1016/S0925-8388(03)00008-2
  9. H. S. Kim: Mater. Sci. Eng., A251 (1999) 100
  10. S. C. Yoon and H. S. Kim: Mater. Sci. Forum, 503-504 (2006) 221
  11. Y. G. Jeong, M. H. Seo, S. C. Yoon, S. I. Hong and H. S. Kim: J. Metastable Nanocryst. Mater., 24-25 (2005) 383 https://doi.org/10.4028/www.scientific.net/JMNM.24-25.383
  12. H. S. Kim, M. H. Seo and S. I. Hong: Mater. Sci. Eng., A291 (2001) 86
  13. B. S. Moon, H. S. Kim and S. I. Hong: Scripta Mater., 46 (2002) 131 https://doi.org/10.1016/S1359-6462(01)01209-X
  14. V. M. Segal: Mater. Sci. Eng., A197 (1995) 157
  15. A. L. Gurson: J. Eng. Mater. Techno., 99 (1977) 2 https://doi.org/10.1115/1.3443401
  16. Y. Estrin, L. S. Tth, A. Molinari and Y. Brchet: Acta Mater., 46 (1998) 5509 https://doi.org/10.1016/S1359-6454(98)00196-7
  17. S. C. Yoon, M. H. Seo and H. S. Kim: Scripta Mater., 55 (2006) 159 https://doi.org/10.1016/j.scriptamat.2006.03.046