• Title/Summary/Keyword: buffer cache scheme

Search Result 41, Processing Time 0.026 seconds

Dynamic Cache Partitioning Strategy for Efficient Buffer Cache Management (효율적인 버퍼 캐시 관리를 위한 동적 캐시 분할 블록교체 기법)

  • 진재선;허의남;추현승
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.35-44
    • /
    • 2003
  • The effectiveness of buffer cache replacement algorithms is critical to the performance of I/O systems. In this paper, we propose the degree of inter-reference gap (DIG) based block replacement scheme that retains merits of the least recently used (LRU) such as simple implementation and good cache hit ratio (CHR) for general patterns of references, and improves CHR further. In the proposed scheme, cache blocks with low DIGs are distinguished from blocks with high DIGs and the replacement block is selected among high DIGs blocks as done in the low inter-reference recency set (LIRS) scheme. Thus, by having the effect of the partitioning the cache memory dynamically based on DIGs, CHR is improved. Trace-driven simulation is employed to verified the superiority of the DIG based scheme and shows that the performance improves up to about 175% compared to the LRU scheme and 3% compared to the LIRS scheme for the same traces.

  • PDF

Management Technique of Buffer Cache for Rendering Systems (렌더링 시스템을 위한 버퍼캐쉬 관리기법)

  • Shin, Donghee;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.155-160
    • /
    • 2018
  • In this paper, we found that buffer cache in general systems does not perform well in rendering software, and presented a new buffer cache management scheme that resolves this problem. To do so, we collected various file I/O traces of rending software and analyzed their characteristics. From this analysis, we observed that file I/Os in rendering consist of long loops, short loops, random accesses, and write-once accesses. Based on this observation, we presented a buffer cache management scheme that allocates cache space to each access types and manages them appropriately, thereby improving the buffer cache performances by 19% on average and up to 55%.

Buffer Cache Management of Smartphones Exploiting Write-Only-Once Characteristics (1회성 쓰기 참조 특성을 고려하는 스마트폰 버퍼캐쉬 관리 기법)

  • Kim, Dohee;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.129-134
    • /
    • 2015
  • This paper analyzes file access characteristics of smartphone apps and finds that a large portion of file writes are performed only once. Based on this observation, we present a new buffer cache management scheme that considers this characteristics. Buffer cache improves storage performance by maintaining hot file data in memory thereby servicing subsequent requests without storage accesses. However, it should flush modified data to storage in order to resist system crashes. The proposed scheme evicts cache data that has been written only once upon flushes, thus improving cache space utilization. Simulation experiments show that the proposed scheme improves cache hit ratio by 5-33% and power consumption by 27-92%.

Hybrid Buffer Replacement Scheme Considering Reference Pattern in Multimedia Storage Systems (멀티미디어 저장 시스템에서 참조 유형을 고려한 혼성 버퍼 교체 기법)

  • 류연승
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.47-56
    • /
    • 2002
  • Previous buffer cache schemes for multimedia storage systems only exploited the sequential references of multimedia files and didn't consider looping references. However, in some video applications like foreign language learning, users mark the scene as loop area and then application automatically playbacks the scene several times. In this paper, we propose a new buffer replacement scheme, called HBM(Hybrid Buffer Management), for multimedia storage systems that have both sequential and looping references. Proposed scheme assumes that application layer informs reference pattern of files to file system. Then HBM applies an appropriate replacement policy to each file. Our simulation experiments show that HBM outperforms previous buffer cache schemes such as DISTANCE and LRU.

  • PDF

Efficient Buffer Allocation Policy for the Adaptive Block Replacement Scheme (적응력있는 블록 교체 기법을 위한 효율적인 버퍼 할당 정책)

  • Choi, Jong-Moo;Cho, Seong-Je;Noh, Sam-Hyuk;Min, Sang-Lyul;Cho, Yoo-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.324-336
    • /
    • 2000
  • The paper proposes an efficient buffer management scheme to enhance performance of the disk I/O system. Without any user level information, the proposed scheme automatically detects the block reference patterns of applications by associating block attributes with forward distance of a block. Based on the detected patterns, the scheme applies an appropriate replacement policy to each application. We also present a new block allocation scheme to improve the performance of buffer cache when kernel needs to allocate a cache block due to a cache miss. The allocation scheme analyzes the cache hit ratio of each application based on block reference patterns and allocates a cache block to maximize cache hit ratios of system. These all procedures are performed on-line, as well as automatically at system level. We evaluate the scheme by trace-driven simulation. Experimental results show that our scheme leads to significant improvements in hit ratios of cache blocks compared to the traditional schemes and requires low overhead.

  • PDF

Considering Data Reference Pattern in Buffer Cache for Continuous Media File System (연속미디어 파일 시스템의 버퍼 캐시에서 데이터 참조 유형의 고려)

  • Cho, Kyung-Woon;Ryu, Yeon-Seung;Koh, Kern
    • The KIPS Transactions:PartA
    • /
    • v.9A no.2
    • /
    • pp.163-170
    • /
    • 2002
  • Previous buffer cache schemes for continuous media file system only exploited the sequentiality of continuous media accesses and didn't consider looping references. However, in some video applications like foreign language learning, users mark the scene as loop area and then application automatically playbacks the scene several times. In this paper, we propose a novel buffer cache scheme for continuous media file system that sequential and looping references exist together. Proposed scheme increases the cache hit ratio by detecting reference pattern of files and appling an appropriate replacement policy to each file.

Hybrid Main Memory based Buffer Cache Scheme by Using Characteristics of Mobile Applications (모바일 애플리케이션의 특성을 이용한 하이브리드 메모리 기반 버퍼 캐시 정책)

  • Oh, Chansoo;Kang, Dong Hyun;Lee, Minho;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1314-1321
    • /
    • 2015
  • Mobile devices employ buffer cache mechanisms, just as in computer systems such as desktops or servers, to mitigate the performance gap between main memory and secondary storage. However, DRAM has a problem in that it accelerates battery consumption by performing refresh operations periodically to maintain the stored data. In this paper, we propose a novel buffer cache scheme to increase the battery lifecycle in mobile devices based on a hybrid main memory architecture consisting of DRAM and non-volatile PCM. We also suggest a new buffer cache policy that allocates buffers based on process states to optimize the performance and endurance of PCM. In particular, our algorithm allocates each page to the appropriate position corresponding to the state of the application that owns the page, and tries to ensure a rapid response of foreground applications even with a small amount of DRAM memory. The experimental results indicate that the proposed scheme reduces the elapsed time of foreground applications by 58% on average and power consumption by 23% on average without negatively impacting the performance of background applications.

Low-power Buffer Cache Management for Mixed HDD and SSD Storage Systems (HDD와 SSD의 혼합형 저장 시스템을 위한 절전형 버퍼 캐쉬 관리)

  • Kang, Hyo-Jung;Park, Jun-Seok;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • A new buffer cache management scheme that aims at reducing power consumption in mixed HDD and NAND flash memory storage systems is presented. The proposed scheme reduces power consumption by considering different energy-consumption rate of storage devices, I/O operation type (read or write), and reference potential of cached blocks in terms of both recency and frequency. Simulation shows that the proposed scheme reduces power consumption by 18.0% on average and up to 58.9%.

An Efficient Algorithm for Restriction on Duplication Caching between Buffer and Disk Caches (버퍼와 디스크 캐시 사이의 중복 캐싱을 제한하는 효율적인 알고리즘)

  • Jung, Soo-Mok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.1
    • /
    • pp.95-105
    • /
    • 2006
  • The speed of hard disk which is based on mechanical operation is more slow than processor. The growth of processor speed is rapid by semiconductor technology, but the growth of disk speed which is based on mechanical operation is not enough. Buffer cache in main memory and disk cache in disk controller have been used in computer system to solve the speed gap between processor and I/O subsystem. In this paper, an efficient buffer cache and disk cache management scheme was proposed to restrict duplicated disk block between buffer cache and disk cache. The performance of the proposed algorithm was evaluated by simulation.

  • PDF

An Efficient Buffer Cache Management Scheme for Heterogeneous Storage Environments (이기종 저장 장치 환경을 위한 버퍼 캐시 관리 기법)

  • Lee, Se-Hwan;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2010
  • Flash memory has many good features such as small size, shock-resistance, and low power consumption, but the cost of flash memory is still high to substitute for hard disk entirely. Recently, some mobile devices, such as laptops, attempt to use both flash memory and hard disk together for taking advantages of merits of them. However, existing OSs (Operating Systems) are not optimized to use the heterogeneous storage media. This paper presents a new buffer cache management scheme. First, we allocate buffer cache space according to access patterns of block references and the characteristics of storage media. Second, we prefetch data blocks selectively according to the location of them and access patterns of them. Third, we moves destaged data from buffer cache to hard disk or flash memory considering the access patterns of block references. Trace-driven simulation shows that the proposed schemes enhance the buffer cache hit ratio by up to 29.9% and reduce the total I/O elapsed time by up to 49.5%.