• Title/Summary/Keyword: breakup

Search Result 372, Processing Time 0.023 seconds

Evaluation of the Impact Force on the Single Spray and Overlap Region of Twin Spray in Full Cone Type Swirl Nozzle (Full Cone Type 스월노즐에서 단일분무와 이중분무의 중첩영역에 대한 충격력 평가)

  • Kim, T.H.;Sung,, Y.M.;Jeong, H.C.;Kim, D.J.;Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The impact force on the single and overlap region of twin spray was experimentally evaluated using visualization method in full cone type swirl nozzle spray. Visualization of spray was conducted to obtain the spray angle and breakup process. The photography/imaging technique, based on Particle Image Velocimetry (PIV) using high-speed camera, was adopted for the direct observation of droplet motion and axial velocity measurement, respectively. Droplet size was measured by Particle Motion Analyze System (PMAS). The purpose of this study is to provide fundamental information of spray characteristics, such as impact force, for higher etching factor in the practical wet etching system. It was found that the spray angle, axial velocity and impact force were increased with increasing the nozzle pressure while droplet size decreased with increasing the nozzle pressure. Droplet size increased as the distance from nozzle tip was decreased. The impact force of twin spray in the overlap region was about 63.29, 67.02, 52.41% higher than that of single spray at 40, 50 and 60 mm of nozzle pitch, respectively. Also, the nozzle pitch was one of the important factors in the twin spray characteristics.

Removal of Rhodamine B in Water by Ultraviolet Radiation Combined with Electrolysis(II) (전기분해와 UV 조사에 의한 수중 Rhodamine B의 제거(II))

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.667-674
    • /
    • 2009
  • This study has carried out to evaluate the effect of NaCI as electrolyte of single (electrolysis and UV process) and complex (electrolysis/UV) processes for the purpose of removal and mineralization of Rhodamine B (RhB) dye in water. It also evaluated the synergetic effect on the combination of electrolysis and UV process. The experimental results showed that RhB removal of UV process was decreased with increase of NaCl, while RhB removal of electrolysis and electrolysis/UV process was increased with increase of NaCI. The decolorization rate of the RhB solution in every process was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. Absorption spectra of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the bulk solution: concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the breakup of the chromophores. It was observed that RhB removal in electrolysis/UV process is similar to the sum of the UV and electrolysis. However, it was found that the COD of RhB could be degraded more efficiently by the electrolysis/UV process than the sum of the two individual process. A synergetic effect was demonstrated in electrolysis/UV process.

INFLUENCE OF ALR ON DISINTEGRATION CHARACTERISTICS IN PNEUMATIC SPRAY

  • Lee, S.G.;Joo, B.C.;Kim, K.C.;Rho, B.J.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • The droplet and the turbulent characteristics of a counterflowing internal mixing pneumatic nozzle mainly focused. The measurements were made using a Phase Doppler Particle Analyzer under the different air pressures. The nozzle with tangential-drilled holes at an angle of 30 to the central axis has been designed. The spatial distributions of velocities, fluctuating velocities, droplet diameters and SMD were quantitatively and qualitatively fluctuating velocities were substantially higher than the radial and the tangential ones. This implies that the disintegration process is enhanced with the higher air pressure. The larger droplets were detected near the spray centerline at the upstream while the smaller ones were generated at the downstream. This was attributed to the lower rates of spherical particles which were not subject to instantaneous breakup. However, substantial increases in SMD from the central part tower spray periphery were predictable in downstream regions.

  • PDF

Effect on the Space and Global Environments by the Space Debris (인공위성이 우주 및 지구환경에 미치는 영향 - 우주폐기물(Space Debris) 중심으로 -)

  • Kim, Won-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.191-200
    • /
    • 2000
  • Recently, NORAD reported that only 6% of the total space objects cataloged in the table as above 10cm objects were being operated for the space missions and the others were just non-operated objects, such as rocket body, useless satellites which were finished their missions, and other fragments of space debris. A major contributor to the orbital debris background has been object breakup. Breakups generally are caused by explosions and collisions. Several international research groups and big countries' governments are trying to develop advanced technology for de-orbiting and to design new future satellites' modeling. The future need to be considered continuously that kind of technology and designing to preserve space and global environmental safety and to maintain welfare of mankind forever.

  • PDF

Spray Characteristics of a Liqud-Liquid Swirl Coaxial Injector (액체-액체 스월 동축형 인젝터의 분무특성)

  • Kim Dong-Jun;Im Ji-Hyuk;Han Poong-Gyoo;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.147-150
    • /
    • 2006
  • The influences of injection conditions and recess configuration of liquid-liquid swirl coaxial injector on spray characteristics were investigated. The characteristics of the coaxial spray in internal mixing injection region were mai y controlled by the merging phenomenon and momentum balance between two liquid sheets, but those in internal mixing injection region were influenced by the impingement phenomenon as well as momentum balance between two liquid sheets.

  • PDF

A Survey on the Droplet Generators and Principle of Droplet Generation (액적 발생기의 종류 및 액적 발생 원리에 대한 고찰)

  • Park, Bong-Yeop;Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.54-60
    • /
    • 2000
  • Most droplet generators are based on the Rayleigh's theory of droplet breakup, and various kind of droplet generation devices have been designed in accordance with vibrating method of capillary liquid column. At present, VOAG(Vibrating Orifice Monodisperse Aerosol Generator) is used to generate primary aerosol standards. For the combustion experiments with isolated single droplet, it is found that dripping method or separating method of suspended drop at an end of filament are more effective. Single drops can be separated from continuous streams of droplets by controlling electric charge.

  • PDF

Modeling of Breakup and Spray of Co-axial Swirl Injector's Outer Orifice Installed LRE combustor (액체로켓엔진에 장착되는 동축 스월형 분사기의 외측 오리피스에서의 분무 및 분열 모사)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-190
    • /
    • 2006
  • This study was performed to investigate the characteristics of a co-axial swirl injector. Especially to predict the initial liquid sheet thickness and spray cone angle of an outer orifice a concept of effective area was introduced from hydraulic analysis. In addition, the parameters determining the characteristics of a co-axial swirl injector were re-defined around outer orifice. The calculated results-SMD, spray cone angle, and spray thickness agreed well with the test results qualitatively.

  • PDF

A Study on Spray and Mixing Characteristics of Unlike Impinging Triplet Injector (F-O-F, O-F-O) (충돌형(F-O-F, O-F-O) 실물형 분사기의 분무특성 및 혼합특성에 관한 연구)

  • 김종규;김승한;문일윤;이광진;서성현;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.195-203
    • /
    • 2003
  • Spray and Mixing characteristics of the unlike impinging triplet injectors (F-O-F, O-F-O) were investigated with the variation of the momentum ratio of oxidizer to fuel. The spray pattern was measured using a backlit stroboscopic photography technique, and mixing efficiency was measured using a mechanical patternator. Kerosene/water were used as a propellant simulant. From the experimental results, it is found that a O-F-O type injector has a good atomization. And as the momentum ratio increases, the mixing efficiency decreases rapidly.

  • PDF

An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics to use Rapid Comperssion Machine (RCM을 이용한 디젤 분무 거동 및 자발화 특성에 관한 실험적 연구)

  • Ahn, J.H.;Kim, H.M.;Shin, M.C.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.33-40
    • /
    • 2003
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community, In order to understand the detailed diesel flame involving the complex physical processes, it is quite desirable to diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation, flame stabilization and pollutant formation, In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes, In terms of the macroscopic spray combustion characteristics, it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle, With increasing the cylinder pressure, there is a tendency that the of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force, Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

A Numerical Study On Various Energy and Environmental Systems (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구)

  • Jang D.S.;Song W.Y.;Na H.R.;Park B.S.;Lee E.J.;Kim B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.160-168
    • /
    • 1995
  • This paper describes computational efforts on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, aerator-induced flow in a lake for DO(dissolved oxygen) concentration, primary clarifier for water and waste water treatment, hood ventilation in workplace, cyclone and LNG combustors and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or the RNG $k-{\varepsilon}$ models. Turbulent reaction is modeled using two fast chemistry methods such as eddy breakup and conserved scalar models. Further, a nonequilibrium model is developed for the application of the chlorination process in the Dow reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal condition of various engineering system of interest.

  • PDF