• Title/Summary/Keyword: brain uptake

Search Result 164, Processing Time 0.043 seconds

Differentiation of Parkinson's Disease and Essential Tremor on I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy- $3{\beta}$-(4-cholorophenyl) tropane) Brain SPECT (파킨슨병과 본태성 진전의 감별진단에서 I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-cholorophenyl) tropane) 뇌 단일광전자방출 전산화단층촬영의 역할)

  • Pai, Moon-Sun;Choi, Tae-Hyun;Ahn, Sung-Min;Choi, Jai-Yong;Ryu, Won-Gee;Lee, Jae-Hoon;Ryu, Young-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.100-106
    • /
    • 2009
  • Purpose: The study was to assess I-123-N-(3-iodopropen-2-yl)-2[beta]-carbomethoxy-3[beta]-(4-cholorophenyl) tropane(IPT) SPECT in differential diagnosis among early stage of Parkinson's disease(PD) and essential tremor(ET) and normal control(NL) groups quantitatively. Materials and Methods: I-123 IPT brain SPECT of 50 NL, 20 early PD, 30 advanced PD, and 20 ET were performed at 20 minutes and 2 hours. Specific/nonspecific binding of striatum was calculated by using right and left striatal specific to occipital non-specific uptake ratio(striatum-OCC/OCC). Results: Mean value of specific/nonspecific binding ratio was significantly different between advanced PD group and NL group. However, significant overlap of striatal specific/nonspecific binding ratio was observed between PD group and ET group. Bilateral striatal specific/nonspecific binding ratios were decreased in advanced PD. Lateralized differences in the striatal uptake of I-123 IPT correlated with asymmetry in clinical findings in PD group. Conclusion: I-123 IPT SPECT may be a useful method for the diagnosis of PD and objective evaluation of progress of clinical stages. Care should be made in the differential diagnosis of early stage of PD and other motor disturbances mimicking PD such as ET in view of significant overlap in striatal I-123 specific/nonspecific binding ratio.

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture (뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상)

  • Chung, David Chanwook;Hong, Kyung Sik;Kang, Jihui;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1112-1117
    • /
    • 2008
  • Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

An Assessment of the Accuracy of 3 Dimensional Acquisition in F-18 fluorodeoxyglucose Brain PET Imaging (3차원 데이터획득 뇌 FDG-PET의 정확도 평가)

  • Lee, Jeong-Rim;Choi, Yong;Kim, Sang-Eun;Lee, Kyung-Han;Kim, Byung-Tae;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.327-336
    • /
    • 1999
  • Purpose: To assess the quantitative accuracy and the clinical utility of 3D volumetric PET imaging with FDG in brain studies, 24 patients with various neurological disorders were studied. Materials and Methods: Each patient was injected with 370 MBq of 2-[$^{18}F$]fluoro-2-deoxy-D-glucose. After a 30 min uptake period, the patients were imaged for 30 min in 2 dimensional acquisition (2D) and subsequently for 10 min in 3 dimensional acquisition imaging (3D) using a GE $Advance^{TM}$ PET system, The scatter corrected 3D (3D SC) and non scatter-corrected 3D images were compared with 2D images by applying ROIs on gray and white matter, lesion and contralateral normal areas. Measured and calculated attenuation correction methods for emission images were compared to get the maximum advantage of high sensitivity of 3D acquisition. Results: When normalized to the contrast of 2D images, the contrasts of gray to white matter were $0.75{\pm}0.13$ (3D) and $0.95{\pm}0.12$ (3D SC). The contrasts of normal area to lesion were $0.83{\pm}0.05$ (3D) and $0.96{\pm}0.05$ (3D SC). Three nuclear medicine physicians judged 3D SC images to be superior to the 2D with regards to resolution and noise. Regional counts of calculated attenuation correction was not significantly different to that of measured attenuation correction. Conclusion: 3D PET images with the scatter correction in FDG brain studies provide quantitatively and qualitatively similar images to 2D and can be utilized in a routine clinical setting to reduce scanning time and patient motion artifacts.

  • PDF

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

Optimization of Subtraction Brain Perfusion SPECT with Basal/Acetazolamide Consecutive Acquisition (기저/아세타졸아미드 부하 연속 촬영 뇌관류 SPECT 최적화)

  • Lee, Dong-Soo;Lee, Tae-Hoon;Kim, Kyeong-Min;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.3
    • /
    • pp.330-338
    • /
    • 1997
  • This study investigated the method to adjust acquisition time(a) and injection dose (i) to make the best basal and subtraction images in consecutive SPECT. Image quality was assumed to be mainly affected by signal to noise ratio(S/N). Basal image was subtracted from the second image consecutively acquired at the same position. We calculated S/N ratio in basal SPECT images($S_1/N_1$) and subtraction SPECT images(Ss/Ns) to find a(time) and i(dose) to maximize S/N of both images at the same time. From phantom images, we drew the relation of image counts and a(time) and i(dose) in our system using fanbeam-high-resolution collimated triple head SPECT. Noise by imaging process depended on Poisson distribution. We took maximum tolerable duration of consecutive acquisition as 30 minutes and maximum injectible dose as 1,850MBq(50 mCi)(sum of two injections) per study. Counts of second-acquired image($S_2$), counts($S_s$) and noise($N_s$) of subtraction SPECT were as follows. $C_1$ was the coefficient of measurement with our system. $$S_2=S_1{\cdot}(\frac{30-a}{a})+background{\cdot}(1-\frac{30-a}{a})+C_1{\cdot}(30-a){\cdot}{\epsilon}{\cdot}(50-i)$$ $$Ss=S_2-\{S_1{\cdot}(\frac{30-a}{a})+background{\cdot}(1-\frac{(30-a)}{a})\}$$ $$Ns={\sqrt{N_2^2+N_1^2{\cdot}\frac{(30-a)^2}{a^2}}={\sqrt{S_2+S_1{\cdot}\frac{(30-a)^2}{a^2}}$$ In case of rest/acetazolamide study, effect(${\epsilon}$) of acetazolamide to increase global brain uptake of Tc-99m-HMPAO could be 1.5 or less. Varying ${\epsilon}$ from 1 to 1.5, a(time) and i(dose) pair to maximize both $S_1/N_l$ and Ss/Ns was determined. 15 mCi/17 min and 35mCi/13min was the best a(time) and i(dose) pair for rest/acetazolamide study(when ${\epsilon}$ were 1.2) and came to be used for our clinical routine after this study. We developed simple method to maximize S/N ratios of basal and subtraction SPECT from consecutive acquisition. This method could be applied to ECD/HMPAO and brain activation studies as well as rest/acetazolamide studies.

  • PDF

Quantitative Differences between X-Ray CT-Based and $^{137}Cs$-Based Attenuation Correction in Philips Gemini PET/CT (GEMINI PET/CT의 X-ray CT, $^{137}Cs$ 기반 511 keV 광자 감쇠계수의 정량적 차이)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Park, Eun-Kyung;Kim, Jong-Hyo;Kim, Jae-Il;Lee, Hong-Jae;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • Purpose: There are differences between Standard Uptake Value (SUV) of CT attenuation corrected PET and that of $^{137}Cs$. Since various causes lead to difference of SUV, it is important to know what is the cause of these difference. Since only the X-ray CT and $^{137}Cs$ transmission data are used for the attenuation correction, in Philips GEMINI PET/CT scanner, proper transformation of these data into usable attenuation coefficients for 511 keV photon has to be ascertained. The aim of this study was to evaluate the accuracy in the CT measurement and compare the CT and $^{137}Cs$-based attenuation correction in this scanner. Methods: For all the experiments, CT was set to 40 keV (120 kVp) and 50 mAs. To evaluate the accuracy of the CT measurement, CT performance phantom was scanned and Hounsfield units (HU) for those regions were compared to the true values. For the comparison of CT and $^{137}Cs$-based attenuation corrections, transmission scans of the elliptical lung-spine-body phantom and electron density CT phantom composed of various components, such as water, bone, brain and adipose, were performed using CT and $^{137}Cs$. Transformed attenuation coefficients from these data were compared to each other and true 511 keV attenuation coefficient acquired using $^{68}Ge$ and ECAT EXACT 47 scanner. In addition, CT and $^{137}Cs$-derived attenuation coefficients and SUV values for $^{18}F$-FDG measured from the regions with normal and pathological uptake in patients' data were also compared. Results: HU of all the regions in CT performance phantom measured using GEMINI PET/CT were equivalent to the known true values. CT based attenuation coefficients were lower than those of $^{68}Ge$ about 10% in bony region of NEMA ECT phantom. Attenuation coefficients derived from $^{137}Cs$ data was slightly higher than those from CT data also in the images of electron density CT phantom and patients' body with electron density. However, the SUV values in attenuation corrected images using $^{137}Cs$ were lower than images corrected using CT. Percent difference between SUV values was about 15%. Conclusion: Although the HU measured using this scanner was accurate, accuracy in the conversion from CT data into the 511 keV attenuation coefficients was limited in the bony region. Discrepancy in the transformed attenuation coefficients and SUV values between CT and $^{137}Cs$-based data shown in this study suggests that further optimization of various parameters in data acquisition and processing would be necessary for this scanner.

Culture of tissue-cyst forming strain of Toxoplama gondii and the effect of cyclic AMP and pyrimidine salvage inhibitors (Toxoplasma gondii 약독주의 배양과 그 성장에 미치는 cyclic AMP와 pyrimidine salvage 억제제의 영향)

  • 최원영;박성경
    • Parasites, Hosts and Diseases
    • /
    • v.32 no.1
    • /
    • pp.19-26
    • /
    • 1994
  • An in uipo culturing to examine the cyst stage of ToxopLQsma gondii (ME49 strain) was Investigated using murine peritoneal macrophages, and we also examined the effect of CAMP or DHFR Inhibitors on the growth of bradyzoltes. For experiments ICR mice were Injected 1.p. with 1,500 brain cysts. At 1, 3, 5 and 7 days, peritoneal exudates were Isolated and then adherent peritoneal macrophages were cultured for 1,3,5 and 10 days. Growth pattern of bradyzoltes was measured by (3H)-uracil uptake assay and morphological pattern of pseudocysts formed in macrophages was observed Uth Glemsa stain. Mostly bradyzoites were observed In the macrophages extracted at 3 and S days post Infection. After 3 days in vitro, a number of pseudocysts were formed in the macrophages and the size of pseudocysts was increased during further 5 and 10 days in vitro culture. CAMP stimulated the growth of bradyzoltes when in uiuo 3 and 5 days and then in vitro 5 and 10 days conditions were applied. In case of.DHFR Inhibitors, pynmethamlne produced a linearly decremental effect with a cont.-dependent mode but methotrexate was not effective against Intracellular bradyzoltes or pseudocysts In this system. It was suggested that cyst-forming strain of T gondii (ME49 strain) could be maintained and cultivated in uitro by use of murine peritoneal macrophages. In uivo 3 and 5 days and then in uiko 5 and 10 days conditions appeared to be suitable for culturing of bradyzoltes. CAMP and pyrimethamine had an effect of stimulation and inhibition on the growth of bradyzolte, respectively.

  • PDF

Comparison Studies of SPECT Dopamine Transporter Imaging and Noninvasive Quantification using [Tc-99m]TRODAT-1 and [I-123]IPT ([Tc-99m]TRODAT-1과 [I-123]IPT SPECT를 이용한 도파민 운반체의 영상화 및 정량분석 비교)

  • Kim, Hee-Joung;Bong, Jung-Kyun;Lee, Hee Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.1
    • /
    • pp.10-19
    • /
    • 1998
  • The SPECT radiopharmaceuticals labeled with I-123 for dopamine transporter imaging have been used to measure dopamine transporters in patients with movement disorders. However, a cyclotron produced I-123 limits its availiability and ease of use as a radioisotope to be labeled with pharmaceuticals in routine clinical diagnostic procedures. Recently, new radiophannaceuticals for Tc-99m which has optimal characteristic for SPECT imaging have been developed to overcome the limits of using I-123. The purpose of this study was to compare the quality of [Tc-99m]TRODAT-1 with [I-123]IPT SPECT data and then to evaluate the usefulness of [Tc-99m]TRODAT-1 SPECT by using three noninvasive simplified quantitative methods. TRODAT-1 labeled with Tc-99m($15.93{\pm}0.82mCi$) and IPT labeled with I-123($6.60{\pm}0.11mCi$) were injected into five normal controls. Dynamic [Tc-99m]TRODAT-1 SPECT scans of brain were performed for 10 minutes each over 180 minnutes, and for 20 minutes at 4 hrs and 5 hrs. [I-123]IPT SPECT scans were performed for 5 minutes each over 120 minutes. Time activity curves were generated for the left basal ganglia(LBG), right basal ganglia(RBG), and occipital cortex(OCC). Dopamine transporter parameters were ohtained using (BG-OCC)/OCC, graphical method($R_V$), and area ratio method($R_A$). TRODAT-1 and IPT SPECT imaging showed high uptake at the level of the basal ganglia. (BG-OCC)/OCC ratios for TRODAT-1 and IPT were $0.80{\pm}0.14$, and $3.22{\pm}0.81$, $R_Vs$ were $0.62{\pm}0.12$, and $2.30{\pm}0.35$, and $R_As$ were $0.37{\pm}0.08$ and $1.73{\pm}0.31$, respectively. In conclusion, further improvement of [Tc-99m]TRODAT-1 imaging characteristics may be required to estimate the dopamine transporter concentrations in human brains although it shows clear BG localization.

  • PDF

[I-123]IPT SPECT Dopamine Reuptake Site Imaging: Differences in Normal Controls and Parkinson's Patients by Semiquantitative Analysis Methods ([I-123]IPT SPECT를 이용한 도파민 재섭취부위의 영상화: 반정성적 분석방법을 이용한 정상인과 파킨슨병 환자의 차이)

  • Kim, Hee-Joung;Im, Joo-Hyuck;Yang, Seoung-Oh;Ryu, Jin-Sook;Choi, Yun-Young;Lee, Myung-Chong;Lee, Hee-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.35-46
    • /
    • 1996
  • Dopamine transporter concentrations have been known to decrease in Parkinson's disease (PD) or increase in Tourette's disorder. The purpose of this study was to evaluate the effectiveness of [I-123]N-(3-iodopropene-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-chlorophenyl) tropane (IPT) as an imaging agent for measuring changes in transporter concentrations with PD. IPT labelled with 6.69+/-0.64 mCi(247.53+/-23.68 MBq) of I-123 was intravenously injected into ten patients(age: 55+/-11) with PD, and six normal controls(NC)(age: 46+/-14) as a bolus. Dynamic SPECT scans of the brain were then performed for 5 minutes each over 120 minutes on a triple headed camera. Time activity curves were generated for the left basal ganglia(LBG), right basal ganglia(RBC), and occipital cortex(OCC). The statistical parameters included the time to peak activity, the contrast ratio of LBG and RBG to OCC at several time points, and the accumulated specific binding counts/mCi/pixel(ASBC) from 0 to 115 minutes. The uptake of IPT in the brains of PD and NC peaked within 10 minutes of injection in all subjects. The maximum target to background ratio in the basal ganglia of PD and NC occurred at 85+/-20 min and 110+/-6 min of injection, respectively. The BG/OCC ratios at 115 minutes for PD and NC were 2.15+/-0.54 and 4.26+/-0.73, respectively. The ASBC at 115 minutes for PD and NC were 152.91+/-50.09 and 289.51+/-49.00, respectively. The ratio of BG/OCC for the NC was significantly higher than the ratio for PD. SPECT data matched with clinical diagnosis for PDs. The ratio between BG and OCC and the ASBC for PD were clearly separated from NC and may be useful outcome measures for clinical diagnosis. The findings suggest that IPT may be a very useful tracer for early diagnosis of PD and study of dopamine reuptake site.

  • PDF

Hyperoxia-Induced ΔR1: MRI Biomarker of Histological Infarction in Acute Cerebral Stroke

  • Kye Jin Park;Ji-Yeon Suh;Changhoe Heo;Miyeon Kim;Jin Hee Baek;Jeong Kon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.446-454
    • /
    • 2022
  • Objective: To evaluate whether hyperoxia-induced ΔR1 (hyperO2ΔR1) can accurately identify histological infarction in an acute cerebral stroke model. Materials and Methods: In 18 rats, MRI parameters, including hyperO2ΔR1, apparent diffusion coefficient (ADC), cerebral blood flow and volume, and 18F-fluorodeoxyglucose uptake on PET were measured 2.5, 4.5, and 6.5 hours after a 60-minutes occlusion of the right middle cerebral artery. Histological examination of the brain was performed immediately following the imaging studies. MRI and PET images were co-registered with digitized histological images. The ipsilateral hemisphere was divided into histological infarct (histological cell death), non-infarct ischemic (no cell death but ADC decrease), and nonischemic (no cell death or ADC decrease) areas for comparisons of imaging parameters. The levels of hyperO2ΔR1 and ADC were measured voxel-wise from the infarct core to the non-ischemic region. The correlation between areas of hyperO2ΔR1-derived infarction and histological cell death was evaluated. Results: HyperO2ΔR1 increased only in the infarct area (p ≤ 0.046) compared to the other areas. ADC decreased stepwise from non-ischemic to infarct areas (p = 0.002 at all time points). The other parameters did not show consistent differences among the three areas across the three time points. HyperO2ΔR1 sharply declined from the core to the border of the infarct areas, whereas there was no change within the non-infarct areas. A hyperO2ΔR1 value of 0.04 s-1 was considered the criterion to identify histological infarction. ADC increased gradually from the infarct core to the periphery, without a pronounced difference at the border between the infarct and non-infarct areas. Areas of hyperO2ΔR1 higher than 0.04 s-1 on MRI were strongly positively correlated with histological cell death (r = 0.862; p < 0.001). Conclusion: HyperO2ΔR1 may be used as an accurate and early (2.5 hours after onset) indicator of histological infarction in acute stroke.