DOI QR코드

DOI QR Code

Injury of Neurons by Oxygen-Glucose Deprivation in Organotypic Hippocampal Slice Culture

뇌 해마조직 절편 배양에서 산소와 당 박탈에 의한 뇌신경세포 손상

  • Chung, David Chanwook (Department of Pediatrics, College of Medicine, Dankook University) ;
  • Hong, Kyung Sik (Department of Pediatrics, College of Medicine, Dankook University) ;
  • Kang, Jihui (Department of Pediatrics, College of Medicine, Dankook University) ;
  • Chang, Young Pyo (Department of Pediatrics, College of Medicine, Dankook University)
  • 정찬욱 (단국대학교 의과대학 소아청소년과학교실) ;
  • 홍경식 (단국대학교 의과대학 소아청소년과학교실) ;
  • 강지희 (단국대학교 의과대학 소아청소년과학교실) ;
  • 장영표 (단국대학교 의과대학 소아청소년과학교실)
  • Received : 2008.06.11
  • Accepted : 2008.08.18
  • Published : 2008.10.15

Abstract

Purpose : We intended to observe cell death and apoptotic changes in neurons in organotypic hippocampal slice cultures following oxygen-glucose deprivation (OGD), using propidium iodide (PI) uptake, Fluoro-Jade (FJ) staining, TUNEL staining and immunofluorescent staining for caspase-3. Methods : The hippocampus of 7-day-old rats was cut into $350{\mu}m$ slices. The slices were cultured for 10 d (date in vitro, DIV 10) and and exposed to OGD for 60 min at DIV 10. They were then incubated for reperfusion under normoxic conditions for an additional 48 h. Fluorescence of PI uptake was observed at predetermined intervals, and the cell death percentage was recorded. At 24 h following OGD, the slices were Cryo-cut into $15{\mu}m$ thicknesses, and Fluoro-Jade staining, TUNEL staining, and immunofluorescence staining for caspase-3 were performed. Results : 1) PI uptake was restricted to the pyramidal cell layer and DG in the slices after OGD. The fluorescent intensities of PI increased from 6 to 48 h during the reperfusion stage. The cell death percentage significantly increased time-dependently in CA1 and DG following OGD (P<0.05). 2) At 24 h after OGD, many FJ positive cells were detected in CA1 and DG. Some neurons had distinct nuclei and processes while others had fragmented nuclei and disrupted processes in CA1. TUNEL and immunofluorescent staining for caspase-3 showed increased expression of TUNEL labeling and caspase-3 in CA1 and DG at 24 h after OGD. Conclusion : The numerous dead cells in the slice cultures after OGD tended to display apoptotic changes mediated by the activation of caspase-3.

목 적: 해마 절편 배양에서 산소-포도당 박탈(oxygen-glucose deprivation, OGD)에 의한 세포 사망과 신경 세포 사멸을 propidium iodide(PI) 섭취, Fluoro-Jade(FJ) 염색, TUNEL 염색, caspase-3 면역형광염색 방법으로 관찰하고자 하였다. 방 법: 생후 7일된 Sprague-Dawley 흰쥐의 해마를 MacIlwain chopper로 $350{\mu}m$ 두께의 절편으로 절단하였다. 해마 절편을 6-well plate의 insert 내의 반 유공(sem-porous) 막 위에서 membrane-interface technique으로 10일 동안 배양하였다. 배양된 해마 절편에 산소-포도당 박탈을 60분 동안 가한 후 재산소-재관류하에 기초 배양액에서 48시간 배양하였다. 재산소-재관류 동안 PI 섭취 형광 정도를 시간에 따라 형광 현미경으로 관찰하고 세포사망 백분율(percent cell death)을 측정하였다. 산소-포도당 박탈 직전과 24 시간 후에 해마 절편을 $15{\mu}m$ 두께로 냉동 절단 후 FJ 염색, TUNEL 염색, caspase-3 면역형광염색을 시행하여 세포 사망을 관찰하였다. 결과: OGD 후 PI 섭취 는 해마 절편의 CA1과 DG에 한정되어있었다. OGD 후 재산소-재관류 동안 6시간에서 48시간까지 PI 섭취 형광 강도는 시간이 증가함에 따라 증가하였다. 세포 사망 백분율은 CA1과 DG에서 모두 OGD 후 재산소-재관류 시간이 증가함에 따라 의미 있게 증가하였다(P<0.05). OGD 후 24시간에 세포 변성을 의미하는 많은 FJ 염색 양성 신경 세포 들이 CA1과 DG에서 관찰되었다. 고배율 confocal laser 현미경으로 관찰한 CA1에서의 신경 세포들 중 일부는 명확한 핵과 돌기를 가지고 있는 것을 보여 주었으며, 다른 신경 세포들은 핵의 분절화, 돌기의 손실 등을 보여 주었다. TUNEL 염색과 caspase-3 염색은 OGD 후 24시간에 CA1과 DA에서 TUNEL 양성 발현을 증가시키고 caspase-3 발현을 증가시켰다. 결 론: 해마 절편 배양에서 산소-포도당 박탈 에 의한 다수의 세포 사망을 관찰할 수 있었다. 사망한 세포 들은 주로 신경 세포의 caspase-3 활성화에 의해 매개된 사멸을 보였다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. Gahwiler BH. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 1981;4:329-42 https://doi.org/10.1016/0165-0270(81)90003-0
  2. Holopainen IE. Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res 2005;30:1521-8 https://doi.org/10.1007/s11064-005-8829-5
  3. Gatherer M, Sundstrom LE. Mossy fibre innervation is not required for the development of kainic acid toxicity in organotypic hippocampal slice cultures. Neurosci Lett 1998;253: 119-22 https://doi.org/10.1016/S0304-3940(98)00619-3
  4. Xiang Z, Yuan M, Hassen GW, Gampel M, Bergold PJ. Lactate induced excitotoxicity in hippocampal slice cultures. Exp Neurol 2004 ;186:70-7 https://doi.org/10.1016/j.expneurol.2003.10.015
  5. Pringle AK, Iannotti F, Wilde GJ, Chad JE, Seeley PJ, Sundstrom LE. Neuroprotection by both NMDA and non- NMDA receptor antagonists in in vitro ischemia. Brain Res 1997;755:36-46 https://doi.org/10.1016/S0006-8993(97)00089-9
  6. Berger R, Jensen A, Paschen W. Metabolic disturbances in hippocampal slices of fetal guinea pigs during and after oxygen-glucose deprivation: is nitric oxide involved? Neurosci Lett 1998;245:163-6 https://doi.org/10.1016/S0304-3940(98)00211-0
  7. Garnier Y, Middelanis J, Jensen A, Berger R. Neuroprotective effects of magnesium on metabolic disturbances in fetal hippocampal slices after oxygen-glucose deprivation: mediation by nitric oxide system. J Soc Gynecol Investig 2002;9: 86-92 https://doi.org/10.1016/S1071-5576(01)00161-7
  8. Fernandez-Lopez D, Martínez-Orgado J, Casanova I, Bonet B, Leza JC, Lorenzo P, et al. Immature rat brain slices exposed to oxygen-glucose deprivation as an in vitro model of neonatal hypoxic-ischemic encephalopathy. J Neurosci Methods 2005;145:205-12 https://doi.org/10.1016/j.jneumeth.2005.01.005
  9. Cho S, Liu D, Fairman D, Li P, Jenkins L, Wood A, et al. Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochem Int 2004;45:117-27 https://doi.org/10.1016/j.neuint.2003.11.012
  10. Noraberg J, Kristensen BW, Zimmer J. Markers for neuronal degeneration in organotypic slice cultures. Brain Res Brain Res Protoc 1999;3:278-90 https://doi.org/10.1016/S1385-299X(98)00050-6
  11. Frantseva MV, Carlen PL, El-Beheiry H. A submersion method to induce hypoxic damage in organotypic hippocampal cultures. J Neurosci Methods 1999;89:25-31 https://doi.org/10.1016/S0165-0270(99)00030-8
  12. Bonde C, Noraberg J, Zimmer J. Nuclear shrinkage and other markers of neuronal cell death after oxygen-glucose deprivation in rat hippocampal slice cultures. Neurosci Lett 2002;327:49-52 https://doi.org/10.1016/S0304-3940(02)00382-8
  13. Zimmer J, Kristensen BW, Jackobsen B, Noraberg J. Excitatory amino acid and modulation of glutamate receptor expression in organotypic brain slice cultures. Amino Acids 2000;19:7-21 https://doi.org/10.1007/s007260070029
  14. Lushnikova IV, Voronin KY, Malyarevskyy PY, Skibo GG. Morphological and functional changes in rat hippocampal slice cultures after short-term oxygen-glucose deprivation. J Cell Mol Med 2004;8:241-8 https://doi.org/10.1111/j.1582-4934.2004.tb00279.x
  15. Moro MA, De Alba J, Leza JC, Lorenzo P, Fernández AP, Bentura ML, et al. Neuronal expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. Eur J Neurosci 1998;10:445-56 https://doi.org/10.1046/j.1460-9568.1998.00028.x
  16. Beilharz EJ, Williams CE, Dragunow M, Sirimanne ES, Gluckman PD. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res 1995;29:1-14 https://doi.org/10.1016/0169-328X(94)00217-3
  17. Sheldon RA, Hall JJ, Noble LJ, Ferriero DM. Delayed cell death in neonatal mouse hippocampus from hypoxia-ischemia is neither apoptotic nor necrotic. Neurosci Lett 2001; 304:165-8 https://doi.org/10.1016/S0304-3940(01)01788-8
  18. Shin DH, Kim JW, Kwon BS, Jung MK, Jee YH, Chang YP, et al. Protective effect of growth hormone on neuronal apoptosis after hypoxia-ischemia in the neonatal rat brain. Neurosci Lett 2004 ;354:64-8 https://doi.org/10.1016/j.neulet.2003.09.070
  19. Wang X, Karlsson JO, Zhu C, Bahr BA, Hagberg H, Blomgren K. Caspase-3 activation after neonatal rat cerebral hypoxia- ischemia. Biol Neonate 2001;79:172-9 https://doi.org/10.1159/000047087
  20. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998;18:4914-28 https://doi.org/10.1523/JNEUROSCI.18-13-04914.1998
  21. Malagelada C, Xifró X, Miñano A, Sabriá J, Rodríguez-Alvarez J. Contribution of caspase-mediated apoptosis to the cell death caused by oxygen-glucose deprivation in cortical cell cultures. Neurobiol Dis 2005;20:27-37 https://doi.org/10.1016/j.nbd.2005.01.028
  22. Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991;37:173-82 https://doi.org/10.1016/0165-0270(91)90128-M
  23. Laake JH, Haug FM, Wieloch T, Ottersen OP. A simple in vitro model of ischemia based on hippocampal slice cultures and propidium iodide fluorescence. Brain Research Protocols 1999;4:173-84 https://doi.org/10.1016/S1385-299X(99)00021-5
  24. Eyüpoglu IY, Savaskan NE, Bräuer AU, Nitsch R, Heimrich B. Identification of neuronal cell death in a model of degeneration in the hippocampus. Brain Res Brain Res Protoc 2003;11:1-8 https://doi.org/10.1016/S1385-299X(02)00186-1
  25. Kundrotiene J, W ner A, Liljequist S. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex. Acta Neurobiol Exp 2004; 64: 153-62
  26. Eisch AJ, Schmued LC, Marshall JF. Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine. Synapse 1998;30:329-33 https://doi.org/10.1002/(SICI)1098-2396(199811)30:3<329::AID-SYN10>3.0.CO;2-V
  27. Brana C, Benham C, Sundstrom L. A method for characterizing cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Brain Res Protoc 2002;10:109-14 https://doi.org/10.1016/S1385-299X(02)00201-5
  28. Kim J, Mitsukawa K, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Cytoskeleton disruption causes apoptotic degeneration of dentate granule cells in hippocampal slice cultures. Neuropharmacology 2002;42:1109-18 https://doi.org/10.1016/S0028-3908(02)00052-7