• 제목/요약/키워드: bounds on codes

검색결과 25건 처리시간 0.029초

LDPC Codes' Upper Bounds over the Waterfall Signal-to-Noise Ratio (SNR) Region

  • 정규혁
    • 한국통신학회논문지
    • /
    • 제33권11C호
    • /
    • pp.880-882
    • /
    • 2008
  • This paper presents LDPC codes' upper bounds over the waterfall SNR region. The previous researches have focused on the average bound or ensemble bound over the whole SNR region and showed the performance differences for the fixed block size. In this paper, the particular LDPC codes' upper bounds for various block sizes are calculated over the waterfall SNR region and are compared with BP decoding performance. For different block sizes the performance degradation of BP decoding is shown.

LDPC 코드와 터보 코드의 성능 상향 한계 분석 (Analysis of Bounding Performance for LDPC codes and Turbo-Like Codes)

  • 정규혁
    • 한국통신학회논문지
    • /
    • 제31권2A호
    • /
    • pp.138-143
    • /
    • 2006
  • 본 논문은 특정한 LDPC 코드와 특정한 인터리버를 가진 터보 코드의 맥시멈 라이클리후드(maximum-likelihood) 디코딩 성능의 상향 한계를 보인다. 현재까지의 연구는 균등 인터리버의 가정을 하거나 또는 앙상블 코드를 사용하여 LDPC 코드와 터보 코드의 성능 상향 한계를 계산하였다. 이러한 성능 상향 한계는 모든 코드 또는 모든 인터리버에 대한 평균 성능만을 표시하게 된다. 제안된 성능 상향 한계는 단순 한계(simple bound)와 정확한 짧은 거리의 항들을 포함하는 추정된 무게 분포를 기초하고 있다. 만약 둘 중에 하나만 사용하게 되면 정확한 성능 상향 한계를 얻을 수 가 없다.

OPTIMAL LINEAR CODES OVER ℤm

  • Dougherty, Steven T.;Gulliver, T. Aaron;Park, Young-Ho;Wong, John N.C.
    • 대한수학회지
    • /
    • 제44권5호
    • /
    • pp.1139-1162
    • /
    • 2007
  • We examine the main linear coding theory problem and study the structure of optimal linear codes over the ring ${\mathbb{Z}}_m$. We derive bounds on the maximum Hamming weight of these codes. We give bounds on the best linear codes over ${\mathbb{Z}}_8$ and ${\mathbb{Z}}_9$ of lengths up to 6. We determine the minimum distances of optimal linear codes over ${\mathbb{Z}}_4$ for lengths up to 7. Some examples of optimal codes are given.

Upper Bounds for the Performance of Turbo-Like Codes and Low Density Parity Check Codes

  • Chung, Kyu-Hyuk;Heo, Jun
    • Journal of Communications and Networks
    • /
    • 제10권1호
    • /
    • pp.5-9
    • /
    • 2008
  • Researchers have investigated many upper bound techniques applicable to error probabilities on the maximum likelihood (ML) decoding performance of turbo-like codes and low density parity check (LDPC) codes in recent years for a long codeword block size. This is because it is trivial for a short codeword block size. Previous research efforts, such as the simple bound technique [20] recently proposed, developed upper bounds for LDPC codes and turbo-like codes using ensemble codes or the uniformly interleaved assumption. This assumption bounds the performance averaged over all ensemble codes or all interleavers. Another previous research effort [21] obtained the upper bound of turbo-like code with a particular interleaver using a truncated union bound which requires information of the minimum Hamming distance and the number of codewords with the minimum Hamming distance. However, it gives the reliable bound only in the region of the error floor where the minimum Hamming distance is dominant, i.e., in the region of high signal-to-noise ratios. Therefore, currently an upper bound on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix cannot be calculated because of heavy complexity so that only average bounds for ensemble codes can be obtained using a uniform interleaver assumption. In this paper, we propose a new bound technique on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix using ML estimated weight distributions and we also show that the practical iterative decoding performance is approximately suboptimal in ML sense because the simulation performance of iterative decoding is worse than the proposed upper bound and no wonder, even worse than ML decoding performance. In order to show this point, we compare the simulation results with the proposed upper bound and previous bounds. The proposed bound technique is based on the simple bound with an approximate weight distribution including several exact smallest distance terms, not with the ensemble distribution or the uniform interleaver assumption. This technique also shows a tighter upper bound than any other previous bound techniques for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix.

On the Design of Block Lengths for Irregular LDPC Codes Based on the Maximum Variable Degree

  • 정규혁
    • 한국통신학회논문지
    • /
    • 제35권11C호
    • /
    • pp.907-910
    • /
    • 2010
  • This paper presents the design of block lengths for irregular low-density parity-check (LDPC) codes based on the maximum variable degree $d_{{\upsilon},max}$. To design a block length, the performance degradation of belief-propagation (BP) decoding performance from upper bounds on the maximum likelihood (ML) decoding performance is used as an important factor. Since for large block lengths, the performance of irregular LDPC codes is very close to the Shannon limit, we focus on moderate block lengths ($5{\times}10^2\;{\leq}\;N\;{\leq}\;4{\times}10^3$). Given degree distributions, the purpose of our paper is to find proper block lengths based on the maximum variable degree $d_{{\upsilon},max}$. We also present some simulation results which show how a block length can be optimized.

Improved Upper Bounds on Low Density Parity Check Codes Performance for the Input Binary AWGN Channel

  • Yu Yi;Lee, Moon-Ho
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.323-326
    • /
    • 2002
  • In this paper, we study the improved bounds on the performance of low-density parity-check (LDPC) codes over binary-input additive white Gaussian noise (AWGN) channels with belief propagation (BP) decoding in log domain. We define an extended Gallager ensemble based on a new method of constructing parity check matrix and make use of this way to improve upper bound of LDPC codes. At the same time, many simulation results are presented in this paper. These results indicate the extended Gallager ensembles based on Hamming codes have typical minimum distance ratio, which is very close to the asymptotic Gilbert Varshamov bound and the superior performance which is better than the original Gallager ensembles.

  • PDF

REPEATED LOW-DENSITY BURST ERROR DETECTING CODES

  • Dass, Bal Kishan;Verma, Rashmi
    • 대한수학회지
    • /
    • 제48권3호
    • /
    • pp.475-486
    • /
    • 2011
  • The paper deals with repeated low-density burst error detecting codes with a specied weight or less. Linear codes capable of detecting such errors have been studied. Further codes capable of correcting and simultaneously detecting such errors have also been dealt with. The paper obtains lower and upper bounds on the number of parity-check digits required for such codes. An example of such a code has also been provided.

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • 제5권3호
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

Polar Code Design for Nakagami-m Channel

  • Guo, Rui;Wu, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3156-3167
    • /
    • 2020
  • One drawback of polar codes is that they are not universal, that is, to achieve optimal performance, different polar codes are required for different kinds of channel. This paper proposes a polar code construction scheme for Nakagami-m fading channel. The scheme fully considers the characteristics of Nakagami-m fading channel, and uses the optimized Bhattacharyya parameter bounds. The constructed code is applied to an orthogonal frequency division multiplexing (OFDM) system over Nakagami-m fading channel to prove the performance of polar code. Simulation result shows the proposed codes can get excellent bit error rate (BER) performance with successive cancellation list (SCL) decoding. For example, the designed polar code with cyclic redundancy check (CRC) aided SCL (L = 8) decoding achieves 1.1dB of gain over LDPC at average BER about 10-5 under 4-quadrature amplitude modulation (4QAM) while the code length is 1024, rate is 0.5.

${L_{1:1}}^\beta$(t) IN TERMS OF A GENERALIZED MEASURE OF ENTROPY

  • Hooda, D.S.;Ram, Anant
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.201-212
    • /
    • 1998
  • In the present paper we define the codes which assign D-alphabet one-one codeword to each outcome of a random variable and the functions which represent possible transormations from one-one codes of size D to suitable codes. By using these functions we obtain lower bounds on the exponentiated mean codeword length for one-one codes in terms of the generalized entropy of order $\alpha$ and type $\beta$ and study the particular cases also.