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Abstract

In this paper, we study the improved bounds on the
performance of low-density parity-check (LDPC)
codes over binary-input additive white Gaussian noise
(AWGN) channels with belief propagation (BP)
decoding in log domain. We define an extended
Gallager ensemble based on a new method of
constructing parity check matrix and make use of this
way to improve upper bound of LDPC codes. At the
same time, many simulation results are presented in
this paper. These results indicate the extended

Gallager ensembles based on Hamming codes have

typical minimum distance ratio, which is very close to
the asymptotic Gilbert Varshamov bound and the
superior performance which is better than the original
Gallager ensembles.

0. Introduction

Galiager first discovered Low Density Parity Check
(LDPC) codes in 1963 [1]. However, LDPC codes
have been almost forgotten for about thirty years, in
spite of their excellent properties. Recently, LDPC
codes were rediscovered by Mackay and Neal [2] as
good error correcting codes achieving near Shannon
limit performance and outperforming turbo codes.
Comparing the LDPC codes with turbo codes, we can
easily find that LDPC codes possess several distinct
advantages over turbo codes: (1) it is easy to create
LDPC codes with almost any rate and block length,

but turbo code should look for a good interleaver; (2)
the simpler decoder based on belief propagation
decoding algorithm of LDPC codes is fully
parallelizable and accomplishes at a greater decoding
speed; (3) the decoding complexity of LDPC codes is
lower than that of turbo codes.

In this paper, we study the improved bounds on the
performance of low-density parity-check (LDPC)
codes over binary-input additive white Gaussian noise
(AWGN) channels with belief propagation (BP)
decoding in log domain. We define an extended
Gallager ensemble based on a new method of
constructing parity check matrix and make use of this
way to improve upper bound of LDPC codes. At the
same time, many simulation results are presented in
this paper. These results indicate the extended
Gallager ensembles based on Hamming codes have
typical minimum distance ratio, which is very close to
the asymptotic Gilbert Varshamov bound and the
superior performance which is better than the original
Gallager ensembles.

This paper is organized as follows. In section |l
LDPC codes and Gallager ensemble are introduced in
details. New Gallager ensemble and improved upper
Section 1V
describes belief propagation (BP) decoding algorithm

bound are studied in section |l .

in log domain. Performance analysis and various
simulation results with different parameters are
presented in section V. Finally, section VI gives a

conclusion.
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0, Low Density Parity Check Codes

Low density parity check codes are linear block codes
thus the set of all code words, x, span the null space of
a parity check matrix H://-x=0_ The parity check
matrix H for LDPC codes is a sparse binary matrix
where the set row and column elements are chosen to
satisfy a desired row and column weight profile. The
set elements in the graph are constrained by the
requirement that the row and column overlap be
minimized. The constraints on the matrix structure
enable efficient decoding and produce a powerful
code. The example structure of H is illustrated in
figure 1. In a block of N bits or symbols, there are M
redundant parity symbols and the code rate R is given
by: R=(N-M)/N. LDPC codes can also be represented
using bipartite graphs where one set of nodes
represents the parity check constraints and the other

set represents the data symbols or variables which are

illustrated in figure 2.
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Figure 1: an example of parity check matrix
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Figure 2: an example of bipartite graph corresponding to

the above parity check matrix

A). Gallager ensemble

The binary regular LDPC codes C (N, j, k) have block
length N and parity-check matrix with exactly j 1’s in
each column and k 1’s in each row [1]. When
constructing the regular LDPC codes, we can use the
following way as shown in figure 3 to construct a
LDPC code. A parity-check matrix is divided into
three sub matrices, each containing a single 1 in each

column. The first of these sub matrices contains 1’s in
descending order; .i.e., the ith row contains 1’s in the
column (i-1)k+1 to ik, where k is the row weight. The
other sub matrices are merely column permutations of
the first sub matrix. The permutations of the 2nCl sub
matrix and the 3rd sub matrix are independently
selected.

11111
Himnt

1

A Column permutated version
=Jofthe I sub matrix

A Colugm permutated version
of the 1 sub matrix

Figure 3: construction of a LDPC code

We call this ensemble based on above construction
of a LDPC code as the original Gallager ensemble. Let
N() be the ensemble average of the number of code
words of weight I0<l<n), Gallager derived an
upper bound on N({).

N(I) < C(A,n)exp(—B(A)n)
Where B(A)=U—I)H(l)-ip(s)—%(k—l)ln2+ JsA

Jj~1 1

CAn) = [2an A= N xexpl o

A=l/n,(0S AL p(s)=In27*[(1+e") +(1-€")*]

The function H(4) is the entropy function defined
by: H(A)=-AIn(2)-(1-A)Inl- ).
The parameters A and s must satisfy the following

00, _ 1 Ou(s)
equation: 4 = —-—-—=,
4 k o5

This upper bound can be considered as an upper
bound on ensemble average weight distribution of
codes belonging to the Gallager ensemble [1]. The
average weight distribution is indispensable basis of
the performance analysis of regular LDPC codes and
used to evaluate the binary input AWGN channel
threshold of the Gallager ensemble.

U- Improved Upper Bounds

In this section, we define a new Gallager ensemble

and derive the improved upper bound in details.
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A). New Gallager Ensemble

First, an H matrix structure is shown in the following:
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Structure of submatyices H and H

Figure 4: a new construction of parity check matrix

According to the above structure, we present a new
method to construct matrix f=[n7 g7y that defines
a (2,k)-regular LDPC code [4]. This structure will
provide much more freedom on the selection of code
length: Given k, any code length that could be
factored as r.x* is permitted, where L cannot be
factoredas L =g4.5,Va,be{0,..k~1}.

In this figure, we can know each block matrix
I.,in Hyis an LxL identity matrix and each
block matrix P, jin H, is obtained by a cyclic shift
of an Lx L identity matrix. Let T denote the right
cyclic shift operator where 7+(Q), then [)"'y =T"(D)
where u=((x—I)-y)mod.and I represents the LxL
identity matrix. f1, is the permutation of H,.

B). Improved Upper Bound

In the description of the new Gallager ensemble, the
average number of code words of weights 1 in the new
Gallager ensemble is denoted by (). We can get the
following formula:

N < C(A,n)exp(~B(A)n)

Where . VT
B(A)=(j —l)H(l)—Izu (s)-fzm|c|+jsz

~ s j-t bA=l/n(0sA<))
C(A,n) =[2mA(1 - A)) ex’{—lm(l—z)]
The parameters A and s must satisfy the following
equation: | o - .
. A:L.é"“af’)
Comparing the upper bound of based on original H
matrix with the improved upper bound based on the

new H matrix, we can get the following figure 5:

Comnparison of typical minimum distance ratios
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Figure S: comparison of typical minimum distance ratios

. The Decoding Algorithm

For LDPC codes, belief propagation (BP) algorithm
can be performed more efficiently and more simply for
hardware implementation in log domain, where the
probabilities are equivalently characterized by the
log-likelihood ratios (LLRs) as follows:

L) =102 1(g,,)=logee’
r q,

mn m

1 1
L(p,) =log £L> L(g)=log %
b ]
1.Initialization

Each bit node n is assigned an a priori LLR (). In
the case of equiprobable inputs on an AWGN channel
with BPSK,

Up)=2y,
a

Where ;2 =(1/2R-(E,/N,)) is the variance of the noise.
For every position (m, n) such that g -1, r(, )and
L(r,,) are initialized as:

Lg.)=Lp,) and 1(,)=0
2.Horizontal step
Each check node m gathers all the incoming
information L(g,,)s» and updates the belief on the bitn
based on the information from all other bits connected
to the check node m.
L(r,,) =2tanh™ ([ Jtanh(L(q,,,)/2))

n'eN(m)n
3.Vertical step

Each bit node n propagates its probability to all the
check nodes that connect to it.
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Lqw) = Lp)+ Y L(r,)

m'eM (n)\m
The decoder gets the total a posteriori probability (APP)
for the bit n by summing the information from all the
check nodes that connect to the bit n.
L(q,) = L(p,)+ D, L(fy)

meM (n)
4. Stop criterion

Hard decision is made on the ;(, ), and the resulting
decoded input vector X is checked against the
parity-check matrix H. If Hz =0, the decoder stops and
outputs % . Otherwise, it repeats the step 2-4.

0. Simulation Results
In this section, we analyze the performance of the new

Gallager ensemble. Many simulation results are
presented, i.e. N=1024, j=3 and k=6. The code rate is
1/2. In this work, LDPC codes are modulated by
BPSK modulation and transmitted over binary input
AWGN channels. The max decoding iterative number
of 100 is simulated.

In figure 6, we can easily know the performance of
the extended Gallager ensemble based on the new
parity check matrix construction is better than the
original case. But in figure 7, the decoding of the
new Gallager is more complexity than the original
Gallager ensember. So the new Gallager ensemble
uses the increase of the decoding complexity as the

cost to achieve superior decoding performance.

N=1024 Cods rate=1/2 Binary input AWGN charne! Max-Reration=100

o

Figure 6: the performance of the new Gallager ensemble

and the original Gallager ensemble
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Figure 7: the average number of iterations of the new

Gallager ensemble and the original Gallager ensemble

0. Conclusion

In this paper, we study the improved bounds on the
performance of low-density parity-check (LDPC)
codes over binary-input additive white Gaussian noise
(AWGN) channels. According to the simulation
results, we can draw a conclusion that when we use a
new way to construct parity check matrix, the upper
bound of LDPC codes is improved, the performance
of new Gallager ensemble is better than the original

Gallager ensemble. At the same time, we can know
the new Gallager ensemble uses the increase of the

decoding complexity as the cost to achieve superior
decoding performance.
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