• Title/Summary/Keyword: bounded analytic function

Search Result 36, Processing Time 0.025 seconds

COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS OF BOUNDED TURNING FUNCTIONS ASSOCIATED WITH COSINE HYPERBOLIC FUNCTION

  • Gagandeep Singh;Gurcharanjit Singh;Navyodh Singh;Navjeet singh
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • The aim of this paper is to study a new and unified class 𝓡αCosh of analytic functions associated with cosine hyperbolic function in the open unit disc E = {z ∈ ℂ : |z| < 1}. Some interesting properties of this class such as initial coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman inequality and third Hankel determinant have been established. Furthermore, these results have also been studied for two-fold and three-fold symmetric functions.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1105-1127
    • /
    • 2013
  • Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.

NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES

  • Fatehi, Mahsa;Shaabani, Mahmood Haji
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.599-612
    • /
    • 2017
  • If ${\psi}$ is analytic on the open unit disk $\mathbb{D}$ and ${\varphi}$ is an analytic self-map of $\mathbb{D}$, the weighted composition operator $C_{{\psi},{\varphi}}$ is defined by $C_{{\psi},{\varphi}}f(z)={\psi}(z)f({\varphi}(z))$, when f is analytic on $\mathbb{D}$. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2({\beta})$, we prove that if $C_{{\psi},{\varphi}}$ is cohyponormal on $H^2({\beta})$, then ${\psi}$ never vanishes on $\mathbb{D}$ and ${\varphi}$ is univalent, when ${\psi}{\not\equiv}0$ and ${\varphi}$ is not a constant function. Moreover, for ${\psi}=K_a$, where |a| < 1, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{{\psi},{\varphi}}$. After that, for ${\varphi}$ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{{\psi},{\varphi}}$, when ${\psi}{\not\equiv}0$ and ${\psi}$ is analytic on $\bar{\mathbb{D}}$. Finally, we find all normal weighted composition operators which are bounded below.

Parametric modeling for the dielectric function of $Cd_{0.77}Mg_{0.23}Te$ alloy film

  • Ihn, Yong-Sub;Kim, Tae-Jung;Kim, Young-Dong
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.4
    • /
    • pp.149-152
    • /
    • 2002
  • We performed the modeling of the dielectric functions of C $d_{0.77}$M $g_{0.23}$Te by using parametric semiconductor model. Parametric model describes the analytic dielectric function as the summation of several energy-bounded Gaussian-broadened polynomials and provides a reasonably well parameterized function which can accurately reproduce the optical constants of semiconductor materials. We obtained the values of fitting parameters of the Mg composition 0.23 in the parametric model. From these parameters we could remove interference oscillations to obtain the dielectric function of C $d_{0.77}$M $g_{0.23}$Te alloy film for full 0.5-6.0 eV energy range.y range.

  • PDF

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF

CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

  • Cho, Dong Hyun;Yoo, Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1531-1548
    • /
    • 2016
  • Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.

RBF Network Based QFT Parameter-Scheduling Control Design for Linear Time-Varying Systems and Its Application to a Missile Control System (시변시스템을 위한 RBF 신경망 기반의 QFT 파라미터계획 제어기법과 alt일 제어시스템에의 적용)

  • 임기홍;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.199-199
    • /
    • 2000
  • Most of linear time-varying(LTV) systems except special cases have no general solution for the dynamic equations. Thus, it is difficult to design time-varying controllers in analytic ways, and other control design approaches such as robust control have been applied to control design for uncertain LTI systems which are the approximation of LTV systems have been generally used instead. A robust control method such as quantitative feedback theory(QFT) has an advantage of guaranteeing the stability and the performance specification against plant parameter uncertainties in frozen time sense. However, if these methods are applied to the approximated linear time-invariant(LTI) plants which have large uncertainty, the designed control will be constructed in complicated forms and usually not suitable for fast dynamic performance. In this paper, as a method to enhance the fast dynamic performance, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks for LTV systems with bounded time-varying parameters.

  • PDF

Parametric model for the dielectric function of InGaAs alloy films (Parametric model을 이용한 InGaAs 박막의 유전함수 연구)

  • 인용섭;김태중;최재규;김영동
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • We Performed the modeling of the dielectric functions of InGaAs by using the parametric semiconductor model. Parametric model describes the analytic dielectric function as the summation of several energy-bounded Gaussian-broadened polynomials and provides a reasonably well parameterized function which can accurately reproduce the optical constants of InGaAs materials. We obtained the values of fitting parameters of an arbitrary composition $\chi$ through the parametric model. And then, from these parameters we could obtain the unknown dielectric functions of InGaAs alloy films ($0\leq\chi\leq1$).

RADIUS CONSTANTS FOR FUNCTIONS ASSOCIATED WITH A LIMACON DOMAIN

  • Cho, Nak Eun;Swaminathan, Anbhu;Wani, Lateef Ahmad
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.353-365
    • /
    • 2022
  • Let 𝓐 be the collection of analytic functions f defined in 𝔻 := {ξ ∈ ℂ : |ξ| < 1} such that f(0) = f'(0) - 1 = 0. Using the concept of subordination (≺), we define $$S^*_{\ell}\;:=\;\{f{\in}A:\;\frac{{\xi}f^{\prime}({\xi})}{f({\xi})}{\prec}{\Phi}_{\ell}(\xi)=1+{\sqrt{2}{\xi}}+{\frac{{\xi}^2}{2}},\;{\xi}{\in}{\mathbb{D}}\}$$, where the function 𝚽(ξ) maps 𝔻 univalently onto the region Ω bounded by the limacon curve (9u2 + 9v2 - 18u + 5)2 - 16(9u2 + 9v2 - 6u + 1) = 0. For 0 < r < 1, let 𝔻r := {ξ ∈ ℂ : |ξ| < r} and 𝒢 be some geometrically defined subfamily of 𝓐. In this paper, we find the largest number 𝜌 ∈ (0, 1) and some function f0 ∈ 𝒢 such that for each f ∈ 𝒢 𝓛f (𝔻r) ⊂ Ω for every 0 < r ≤ 𝜌, and $${\mathcal{L} _{f_0}}({\partial}{\mathbb{D}_{\rho})\;{\cap}\;{\partial}{\Omega}_{\ell}\;{\not=}\;{\emptyset}$$, where the function 𝓛f : 𝔻 → ℂ is given by $${\mathcal{L}}_f({\xi})\;:=\;{\frac{{\xi}f^{\prime}(\xi)}{f(\xi)}},\;f{\in}{\mathcal{A}}$$. Moreover, certain graphical illustrations are provided in support of the results discussed in this paper.

ON QUASI-CLASS A OPERATORS

  • Kim, In Hyoun;Duggal, B.P.;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.205-209
    • /
    • 2011
  • Let $\mathcal{QA}$ denote the class of bounded linear Hilbert space operators T which satisfy the operator inequality $T^*|T^2|T{\geq}T^*|T|^2T$. Let $f$ be an analytic function defined on an open neighbourhood $\mathcal{U}$ of ${\sigma}(T)$ such that $f$ is non-constant on the connected components of $\mathcal{U}$. We generalize a theorem of Sheth [10] to $f(T){\in}\mathcal{QA}$.